Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A.
View Article and Find Full Text PDFThe development of an effective and broadly protective influenza vaccine against circulating and emerging strains remains elusive. In this study, we evaluated a potentially universal influenza vaccine based on single-component self-assembling protein nanoparticles (1c-SApNPs) presenting the conserved matrix protein 2 ectodomain (M2e) from influenza A and B viruses (IAV and IBV, respectively). We previously designed a tandem antigen comprising three IAV M2e domains of human, avian/swine, and human/swine origins (termed M2ex3).
View Article and Find Full Text PDFBackground: Considerable morbidity and death are associated with acute kidney damage (AKI) following total aortic arch replacement (TAAR). The relationship between AKI following TAAR and serum magnesium levels remains unknown. The intention of this research was to access the predictive value of serum magnesium levels on admission to the Cardiovascular Surgical Intensive Care Unit (CSICU) for AKI in patients receiving TAAR.
View Article and Find Full Text PDFBackground: Severe acute kidney injury (AKI) after total aortic arch replacement (TAAR) is related to adverse outcomes in patients with acute type A aortic dissection (ATAAD). However, the early prediction of severe AKI remains a challenge. This study aimed to develop a novel model to predict severe AKI after TAAR in ATAAD patients using machine learning algorithms.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A.
View Article and Find Full Text PDFThe development of a cross-protective pan-influenza A vaccine remains a significant challenge. In this study, we designed and evaluated single-component self-assembling protein nanoparticles (SApNPs) presenting the conserved extracellular domain of matrix protein 2 (M2e) as vaccine candidates against influenza A viruses. The SApNP-based vaccine strategy was first validated for human M2e (hM2e) and then applied to tandem repeats of M2e from human, avian, and swine hosts (M2ex3).
View Article and Find Full Text PDFIntroduction: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common hospital-acquired AKI that carries a grave disease burden. Recently, gut-kidney crosstalk has greatly changed our understanding of the pathogenesis of kidney diseases. However, the relationship between gut microbial dysbiosis and CSA-AKI remains unclear.
View Article and Find Full Text PDFObjective: Serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and cystatin C (sCysC) are available clinically and beneficial in diagnosing acute kidney injury (AKI). Our purpose is to identify the performance of their combined diagnosis for AKI in critically ill patients.
Design: A prospectively recruited, observational study was performed.
Acute kidney injury (AKI) is a common but fatal complication after cardiac surgery. In the absence of effective treatments, the identification and modification of risk factors has been a major component of disease management. However, the optimal blood pressure target for preventing cardiac surgery-associated acute kidney injury (CSA-AKI) remains unclear.
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) after total aortic arch replacement (TAAR) is frequent and associated with adverse outcomes, whereas its early detection remains a challenge. Serum cystatin C (sCysC) and urinary N-acetyl-β-d-glucosaminidase (uNAG) are clinically available renal biomarkers, but their combination for AKI detection requires more evidence. This study aimed to assess the discriminative abilities of these biomarkers in AKI after TAAR.
View Article and Find Full Text PDFThe effects of using gut microbiota metabolites instead of live microorganisms to modulate sepsis-induced gut dysbiosis remain largely unknown. We assessed the effects of microbiota metabolite indole-3-propionic acid (IPA) on gut microbiota in mice during sepsis. Sepsis models were constructed by cecal ligation and puncture (CLP) methods.
View Article and Find Full Text PDFSepsis-associated encephalopathy (SAE) is common in septic patients and is associated with adverse outcomes. The gut microbiota has been recognized as a key mediator of neurological disease development. However, the exact role of the gut microbiota in regulating SAE remains elusive.
View Article and Find Full Text PDFObjective: Changes in thyroid function will be accompanied by changes in urinary N-acetyl-β-D-glucosaminidase (uNAG) levels. Therefore, whether thyroid hormones interfere the ability of uNAG in detecting acute kidney injury (AKI) has raised concern in patients with critical illness.
Design: A prospectively recruited, observational study was performed.
Background: Systematic estimation of renal biomarkers in the intensive care unit (ICU) patients is lacking. Seventeen biomarkers were assessed to predict acute kidney injury (AKI) after admission to ICU.
Materials And Methods: A prospective, observational study was conducted in the general ICU of Guangdong Provincial People's Hospital.
The plasma colloid osmotic pressure (COP) values for predicting mortality are not well-estimated. A user-friendly nomogram could predict mortality by incorporating clinical factors and scoring systems to facilitate physicians modify decision-making when caring for patients with serious neurological conditions. Patients were prospectively recruited from March 2017 to September 2018 from a tertiary hospital to establish the development cohort for the internal test of the nomogram, while patients recruited from October 2018 to June 2019 from another tertiary hospital prospectively constituted the validation cohort for the external validation of the nomogram.
View Article and Find Full Text PDFVaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.
View Article and Find Full Text PDFThe immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers.
View Article and Find Full Text PDFEbola virus (EBOV) glycoprotein (GP) can be recognized by neutralizing antibodies (NAbs) and is the main target for vaccine design. Here, we first investigate the contribution of the stalk and heptad repeat 1-C (HR1) regions to GP metastability. Specific stalk and HR1 modifications in a mucin-deleted form (GPΔmuc) increase trimer yield, whereas alterations of HR1 exert a more complex effect on thermostability.
View Article and Find Full Text PDFVaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.
View Article and Find Full Text PDFVaccination against SARS-CoV-2 provides an effective tool to combat the COVID-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system.
View Article and Find Full Text PDFHuman IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs).
View Article and Find Full Text PDFVaccination against SARS-CoV-2 provides an effective tool to combat the COIVD-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system.
View Article and Find Full Text PDFAn oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the V1-69 germline gene, and have a disulfide-linked long HCDR3 loop.
View Article and Find Full Text PDF