Ammonia (NH₃) is a crucial industrial raw material, but the traditional Haber-Bosch process is energy-intensive and highly polluting. Electrochemical methods for synthesizing ammonia using nitric oxide (NO) as a precursor offer the advantages of operating under ambient conditions and achieving both NO reduction and resource utilization. Defect engineering enhances electrocatalytic performance by modulating electronic structures and coordination environments.
View Article and Find Full Text PDFThe vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-b]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative 9k (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC = 8.
View Article and Find Full Text PDF5-Hydroxymethylfurfural (HMF), serving as a versatile platform compound bridging biomass resource and the fine chemicals industry, holds significant importance in biomass conversion processes. The electrooxidation of HMF plays a crucial role in yielding the valuable product (2,5-furandicarboxylic acid), which finds important applications in antimicrobial agents, pharmaceutical intermediates, polyester synthesis, and so on. Defect engineering stands as one of the most effective strategies for precisely synthesizing electrocatalytic materials, which could tune the electronic structure and coordination environment, and further altering the adsorption energy of HMF intermediate species, consequently increasing the kinetics of HMF electrooxidation.
View Article and Find Full Text PDFProliferating cancer cells are characterized by the Warburg effect, a metabolic alteration in which ATP is generated from cytoplasmic glycolysis instead of oxidative phosphorylation. The pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis plays a crucial role in this effect and has been identified as a potential target for anticancer drug development. Herein, we present the discovery and pharmacological evaluation of potent PDK inhibitors targeting the PDK/PDC axis.
View Article and Find Full Text PDFTNBG-5602, a new synthesized derivative of tetrazanbigen, is a potential chemotherapeutic agent against cancer. However, its underlying mechanism is complex and still unknown. In this investigation, the anticancer effects of TNBG-5602 were determined in vitro and in vivo.
View Article and Find Full Text PDFAs serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin showed a low MIC value of 2 μg mL towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL). Also, the active molecule exhibited low cytotoxicity against LO cells with no distinct tendency to induce the concerned resistance towards MRSA.
View Article and Find Full Text PDFTetrazanbigen () is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines lipoapoptosis induction. Herein, we developed a series of novel analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, , which strongly inhibited HepG2 and A549 cell growth with IC values of 0.
View Article and Find Full Text PDFThis work explored a novel type of potential multi-targeting antimicrobial three-component sulfanilamide hybrids in combination of pyrimidine and azoles. The hybridized target molecules were characterized by H NMR, C NMR and HRMS spectra. Some of the developed target compounds exerted promising antimicrobial activity in comparison with the reference drugs norfloxacin and fluconazole.
View Article and Find Full Text PDFObjectives: TNBG-5602 is a newly synthesized compound with an isoquinoline structure. In the present study, we demonstrated the anticancer effect of TNBG-5602 in in-vitro and in-vivo models and investigated its possible anticancer mechanism.
Methods: The antiproliferation effect of TNBG-5602 in vitro was evaluated in human liver cancer cell line QGY-7701.
Bioorg Med Chem Lett
August 2019
HDAC and CDK inhibitors have been demonstrated to be synergistically in suppressing cancer cell proliferation and inducing apoptosis. In this work, we incorporated the pharmacophore groups of HDACs and CDKs inhibitors into one molecule to design and synthesize a series of purin derivatives as HDAC/CDK dual inhibitors. The lead compound 6d, showing good HDAC1 and CDK2 inhibitory activity with IC values of 5.
View Article and Find Full Text PDFA novel series of benzimidazole-incorporated sulfonamide analogues were designed and synthesized with an effort to overcome the increasing antibiotic resistance. Compound 5c gave potent activities against Gram-positive bacteria and fungi, and 2,4-dichlorobenzyl derivative 5g showed good activities against Gram-negative bacteria. Both of these two active molecules 5c and 5g could effectively intercalate into calf thymus DNA to form compound-DNA complex respectively, which might block DNA replication to exert their powerful antimicrobial activity.
View Article and Find Full Text PDFThe increasing incidence of microbial resistance and newly emerging pathogens have become a serious challenge for public health. More and more efforts have been directed to the development of new antimicrobial agents with distinct mechanisms from the well-known classes of clinical drugs. The extensive clinical utilization of azole-based medicinal drugs has evoked numerous attentions, and their researches and developments have been a quite rapid developing and active highlight topic with an infinite space.
View Article and Find Full Text PDFAnticancer Agents Med Chem
June 2010
The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules.
View Article and Find Full Text PDFAnticancer Agents Med Chem
April 2010
The research and development of metal supramolecular complexes as anticancer supramolecular drugs, which are aggregates mainly formed by one or more inorganic metal compounds with one or more either inorganic or organic molecules in general via coordination bonds, has been a quite rapidly developing, increasingly active and newly rising highlight interdisciplinary field. Numerous efforts have been directed toward metal supramolecular complexes as potential anticancer agents and the unprecedented progress has been made. This has opened up a wholly new and infinite space to create novel metal-based bioactive supermolecules.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2010
A series of N-substituted carbazole derivatives were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Bacillus proteus, Candida albicans and Aspergillus fumigatus by two fold serial dilution technique. Some of the synthesized compounds displayed comparable or even better antibacterial and antifungal activities than reference drugs fluconazole, chloramphenicol and norfloxacin against tested strains.
View Article and Find Full Text PDFArch Pharm (Weinheim)
July 2009
A series of novel 1,2,4-triazolium derivatives was synthesized starting from commercially available 1H-1,2,4-triazole, 2,4-dichlorobenzyl chloride, or 2,4-difluorobenzyl bromide. Their antibacterial and antifungal activities were evaluated against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Bacillus proteus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans ATCC 76615, and Aspergillus fumigatus. All structures of the new compounds were confirmed by NMR, IR, and MS spectra, and elemental analyses.
View Article and Find Full Text PDFSupramolecular medicinal chemistry field has been a quite rapidly developing, increasingly active and newly rising interdiscipline which is the new expansion of supramolecular chemistry in pharmaceutical sciences, and is gradually becoming a relatively independent scientific area. Supramolecular drugs could be defined as medicinal supermolecules formed by two or more molecules through non-covalent bonds. So far a lot of supermolecules as chemical drugs have been widely used in clinics.
View Article and Find Full Text PDF