Plasmonic surface-enhanced transmission Raman spectroscopy (SETRS) has emerged as a promising optical technique for detecting and predicting the depths of deep-seated lesions in biological tissues. However, studies using SETRS are scarce and typically show shallow penetration depths. Moreover, the optical parameters used in the prediction process are often derived from frozen samples and there is limited understanding of how freezing affects the optical properties of biological tissues and the accuracy of depth prediction in living models.
View Article and Find Full Text PDFLabel-free surface-enhanced Raman spectroscopy (SERS) is capable of capturing rich compositional information from complex biosamples by providing vibrational spectra that are crucial for biosample identification. However, increasing complexity and subtle variations in biological media can diminish the discrimination accuracy of traditional SERS excited by a single laser wavelength. Herein, we introduce a multiwavelength SERS approach combined with machine learning (ML)-based classification to improve the discrimination accuracy of human urine specimens for bladder cancer (BCa) diagnosis.
View Article and Find Full Text PDFGastric and esophageal cancers, the predominant forms of upper gastrointestinal malignancies, contribute significantly to global cancer mortality. Routine detection methods, including medical imaging, endoscopic examination, and pathological biopsy, often suffer from drawbacks such as low sensitivity and laborious and complex procedures. Raman spectroscopy is a non-invasive and label-free optical technique that provides highly sensitive biomolecular information to facilitate effective tumor identification.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
The incidence of thyroid cancer is increasing worldwide. Fine-needle aspiration (FNA) cytology is widely applied with the use of extracted biological cell samples, but current FNA cytology is labor-intensive, time-consuming, and can lead to the risk of false-negative results. Surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms holds promise for cancer diagnosis.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Label-free surface-enhanced Raman spectroscopy (SERS) has attracted extensive attention as an emerging technique for molecular phenotyping of biological samples. However, the selective enhancement property of SERS mediated by complicated interactions between substrates and analytes is unfavorable for molecular profiling. The electrostatic force is among the most dominating interactions that can cause selective adsorption of molecules to charged substrates.
View Article and Find Full Text PDFThe field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability.
View Article and Find Full Text PDFMolecular phenotypic variations in metabolites offer the promise of rapid profiling of physiological and pathological states for diagnosis, monitoring, and prognosis. Since present methods are expensive, time-consuming, and still not sensitive enough, there is an urgent need for approaches that can interrogate complex biological fluids at a system-wide level. Here, we introduce hyperspectral surface-enhanced Raman spectroscopy (SERS) to profile microliters of biofluidic metabolite extraction in 15 min with a spectral set, SERSome, that can be used to describe the structures and functions of various molecules produced in the biofluid at a specific time via SERS characteristics.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2024
Esophageal cancer is one of the leading causes of cancer-related deaths worldwide. The identification of residual tumor tissues in the surgical margin of esophageal cancer is essential for the treatment and prognosis of cancer patients. But the current diagnostic methods, either pathological frozen section or paraffin section examination, are laborious, time-consuming, and inconvenient.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans.
View Article and Find Full Text PDF