Publications by authors named "Linkui Zhang"

A series of 1-benzyl-5-oxopyrrolidine-2-carboximidamide derivatives were designed and synthesized. Their protective activities against N-methyl-d-aspartic acid (NMDA)-induced cytotoxicity were investigated in vitro. All of the compounds exhibited neuroprotective activities, especially 12k, which showed higher potency than reference compound 1 (ifenprodil).

View Article and Find Full Text PDF

The interaction of GluN2B-Containing NMDA Receptor with 18 antagonists were investigated by a combined ligand-based and target-based approach. First, two distinct pharmacophore models were generated for antagonists which cluster in two groups with Catalyst (HipHop module). The pharmacophore of "ifenprodil group" antagonists includes three hydrophobic groups, one H-bond donor and one H-bond acceptor, the pharmacophore of "EVT101 group" antagonists involves one aromatic ring, two hydrophobic groups and one H-bond acceptor.

View Article and Find Full Text PDF

Cadmium (Cd) is a potent toxic heavy metal, some studies showed that Cd-induced apoptosis is through ER stress pathway. Compounds of pyrrolo[2,1-c][1,4]benzodiazepine (PBD)-3,11-diones were discovered as potent neuroprotective agents against Cd-induced toxicity in SH-SY5Y cells for the first time. In this study, twenty-six PBD-3,11-dione derivatives were synthesized and evaluated for their neuroprotective activity against Cd-induced toxicity by CCK-8 assay.

View Article and Find Full Text PDF

Diverse of 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid derivatives were designed, synthesized and evaluated for their neuroprotective activity against NMDA-induced cytotoxicity in vitro, and 5q exhibited excellent neuroprotective activity. The compound 5q was selected for further investigation. We found that 5q could attenuate Ca influx induced by NMDA, meanwhile, 5q could suppress the NR2B up-regulation and increase p-ERK1/2 expression.

View Article and Find Full Text PDF

Linarinic acid, (-)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline-1-carboxylic acid (4a), was isolated from the ethanol extract of Linaria vulgaris Mill. In our previous study, a series of tetrahydropyrrolo[2,1-b]quinazoline derivatives 4b, 4c, 5a, 5b, 6a and 6b that were structurally related to 4a and evaluated as neuroprotective agents were synthesized. The aim of the present study was to investigate the novel features of these compounds.

View Article and Find Full Text PDF