Publications by authors named "Linker T"

High electric fields can significantly alter catalytic environments and the resultant chemical processes. Such fields arise naturally in biological systems but can also be artificially induced through localized nanoscale excitations. Recently, strong field excitation of dielectric nanoparticles has emerged as an avenue for studying catalysis in highly ionized environments, producing extreme electric fields.

View Article and Find Full Text PDF
Article Synopsis
  • Surface charges are crucial in determining the catalytic properties of nanomaterials, but studying their dynamics at the nanoscale is difficult due to varying length and time scales.
  • This study utilizes reaction nanoscopy to visualize charge dynamics on individual SiO nanoparticles with femtosecond and nanometer resolution, revealing how surface charges redistribute over time.
  • The research enhances our understanding of how surface charges affect chemical bonding on a nanoscale level, which could have significant implications for renewable energy and advanced healthcare innovations.*
View Article and Find Full Text PDF

We present the design of an anthracenyl-naphthyl (ANT-NAPH) dyad and its application as a luminescent 4-stage photo switch. Both segments can individually react with singlet oxygen to switch off an optical response. In their initial form the larger ANT component reacts significantly faster and thus an ANTO-NAPH stage is turned on, observed by optical response of the remaining NAPH.

View Article and Find Full Text PDF

Birch reductions are well-known transformations of arenes, applied for large scale synthesis of 1,4-cyclohexadienes. Herein, we describe first reactions of benzoic acids in the presence of carbonyl compounds, affording aldol products in moderate to high yields. Alkyl aldehydes give the expected nonconjugated dienes by reaction at the α-position.

View Article and Find Full Text PDF

Vibrational spectroscopy allows us to understand complex physical and chemical interactions of molecular crystals and liquids such as ammonia, which has recently emerged as a strong hydrogen fuel candidate to support a sustainable society. We report inelastic neutron scattering measurement of vibrational properties of ammonia along the solid-to-liquid phase transition with high enough resolution for direct comparisons to ab-initio simulations. Theoretical analysis reveals the essential role of nuclear quantum effects (NQEs) for correctly describing the intermolecular spectrum as well as high energy intramolecular N-H stretching modes.

View Article and Find Full Text PDF

Surface transfer doping is proposed to be a potential solution for doping diamond, which is hard to dope for applications in high-power electronics. While MoO is found to be an effective surface electron acceptor for hydrogen-terminated diamond with a negative electron affinity, the effects of commonly existing oxygen vacancies remain elusive. We have performed reactive molecular dynamics simulations to study the deposition of MoO on a hydrogenated diamond (111) surface and used first-principles calculations based on density functional theory to investigate the electronic structures and charge transfer mechanisms.

View Article and Find Full Text PDF

Vinyl-substituted carbohydrates have been synthesized from glycals derived from hexoses and pentoses. Key step is the radical reaction of xanthates in the presence of triethylborane, a non-toxic reagent. The mechanism has been investigated by isolation of various side products, which speak for a reversibility of the cyclopropylmethyl radical ring-opening.

View Article and Find Full Text PDF

We have developed an extension of the Neural Network Quantum Molecular Dynamics (NNQMD) simulation method to incorporate electric-field dynamics based on Born effective charge (BEC), called NNQMD-BEC. We first validate NNQMD-BEC for the switching mechanisms of archetypal ferroelectric PbTiO bulk crystal and 180° domain walls (DWs). NNQMD-BEC simulations correctly describe the nucleation-and-growth mechanism during DW switching.

View Article and Find Full Text PDF

Carbohydrates constitute one of the four key classes of biomacromolecules but have not been studied by 2D-IR spectroscopy so far. Similarly as for proteins, a lack of native vibrational reporter groups, combined with their huge structural diversity, leads to spectrally congested infrared spectra already for single carbohydrates. Biophysical studies are further impeded by the strong overlap between water modes and carbohydrate modes.

View Article and Find Full Text PDF

Ultrathin MoS has shown remarkable characteristics at the atomic scale with an immutable disorder to weak external stimuli. Ion beam modification unlocks the potential to selectively tune the size, concentration, and morphology of defects produced at the site of impact in 2D materials. Combining experiments, first-principles calculations, atomistic simulations, and transfer learning, it is shown that irradiation-induced defects can induce a rotation-dependent moiré pattern in vertically stacked homobilayers of MoS by deforming the atomically thin material and exciting surface acoustic waves (SAWs).

View Article and Find Full Text PDF

Mechanical controllability of recently discovered topological defects (., skyrmions) in ferroelectric materials is of interest for the development of ultralow-power mechano-electronics that are protected against thermal noise. However, fundamental understanding is hindered by the "multiscale quantum challenge" to describe topological switching encompassing large spatiotemporal scales with quantum mechanical accuracy.

View Article and Find Full Text PDF

Leishmaniasis is a vector-borne disease caused by protozoal Leishmania parasites. Previous studies have shown that endoperoxides (EP) can selectively kill Leishmania in host cells. Therefore, we studied in this work a set of new anthracene-derived EP (AcEP) together with their non-endoperoxidic analogs in model systems of Leishmania tarentolae promastigotes (LtP) and J774 macrophages for their antileishmanial activity and selectivity.

View Article and Find Full Text PDF

Metal-fullerene compounds are characterized by significant electron transfer to the fullerene cage, giving rise to an electric dipole moment. We use the method of electrostatic beam deflection to verify whether such reactions take place within superfluid helium nanodroplets between an embedded C molecule and either alkali (heliophobic) or rare-earth (heliophilic) atoms. The two cases lead to distinctly different outcomes: CNa ( = 1-4) display no discernable dipole moment, while CYb is strongly polar.

View Article and Find Full Text PDF

Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales where these topologies emerge, we have performed multiscale excited-state neural network quantum molecular dynamics simulations that integrate quantum-mechanical description of electronic excitation and billion-atom machine learning molecular dynamics to describe ultrafast polarization control in an archetypal ferroelectric oxide, lead titanate. Far-from-equilibrium quantum simulations reveal a marked photo-induced change in the electronic energy landscape and resulting cross-over from ferroelectric to octahedral tilting topological dynamics within picoseconds.

View Article and Find Full Text PDF

Polymer dielectrics can be cost-effective alternatives to conventional inorganic dielectric materials, but their practical application is critically hindered by their breakdown under high electric fields driven by excited hot charge carriers. Using a joint experiment-simulation approach, we show that a 2D nanocoating of hexagonal boron nitride (hBN) mitigates the damage done by hot carriers, thereby increasing the breakdown strength. Surface potential decay and dielectric breakdown measurements of hBN-coated Kapton show the carrier-trapping effect in the hBN nanocoating, which leads to an increased breakdown strength.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a mild but effective method to treat certain types of cancer upon irradiation with visible light. Here, three isomeric methylpyridinium alkynylanthracenes 1o─p were evaluated as sensitizers for PDT. Upon irradiation with blue or green light, all three compounds show the ability to initiate strand breaks of plasmid DNA.

View Article and Find Full Text PDF
Article Synopsis
  • O sensitizers can effectively interact with DNA, enhancing their ability to generate singlet oxygen ( O ).
  • Three isomeric pyridinium alkynylanthracenes were created, and their interactions with DNA were studied, revealing that they intercalate into DNA with a specific orientation.
  • In particular, when interacting with poly(dA:dT) and exposed to green light, these compounds significantly enhance the production of singlet oxygen, while the effect is reduced with poly(dG:dC).
View Article and Find Full Text PDF

The photooxygenation of 1,4-cyclohexadienes has been studied with a special focus on regio- and stereoselectivities. In all examples, only the methyl-substituted double bond undergoes an ene reaction with singlet oxygen, to afford hydroperoxides in moderate to good yields. We explain the high regioselectivities by a "large-group effect" of the adjacent quaternary stereocenter.

View Article and Find Full Text PDF

Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products.

View Article and Find Full Text PDF

9,10-substituted anthracenes are known for their useful optical properties like fluorescence, which makes them frequently used probes in sensing applications. In this article, we investigate the fundamental photophysical properties of three pyridyl-substituted variants. The nitrogen atoms in the pyridinium six-membered rings are located in the ortho-, meta-, and para-positions in relation to the anthracene core.

View Article and Find Full Text PDF
Article Synopsis
  • Photoexcitation can change the potential energy of materials like SrTiO (STO), revealing hidden phases and altering functionalities, particularly in nanostructured devices.
  • Recent studies found a hidden ferroelectric phase in STO through weak terahertz excitation, while strong laser excitation creates nanostructures and affects polarization patterns, although the underlying mechanisms are still unclear.
  • Nonadiabatic quantum molecular dynamics have identified a three-stage process in photoexcited STO leading to amorphization, which could influence future technologies in laser nanostructuring and "quantum materials on demand."
View Article and Find Full Text PDF

We employ few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to reveal simultaneously the intra- and interband carrier relaxation and the light-induced structural dynamics in nanoscale thin films of layered 2H-MoTe semiconductor. By interrogating the valence electronic structure via localized Te 4 (39-46 eV) and Mo 4 (35-38 eV) core levels, the relaxation of the photoexcited hole distribution is directly observed in real time. We obtain hole thermalization and cooling times of 15 ± 5 fs and 380 ± 90 fs, respectively, and an electron-hole recombination time of 1.

View Article and Find Full Text PDF

In the search of new DNA groove binding agents a series of substituted 9,10-methylpyridiniumanthracenes have been synthesized and their interactions with DNA have been studied by UV/vis absorption, CD and fluorescence spectroscopy. A minor groove binding mode is confirmed by DNA melting studies, strong CD effects, the dependence of the binding affinity on ionic strength, and the differentiation between AT and GC base pairs. No binding occurs to GC sequences.

View Article and Find Full Text PDF

Carbohydrate radical stabilities in the 1- and 2-position have been determined by a radical clock approach, starting from cyclopropanated sugars with xanthates as precursors. Various hexoses and pentoses afforded 1-deoxy sugars as main products, indicating that anomeric radicals are more stable than radicals in the 2-position. An additional influence of the configurations on radical stabilities has been observed.

View Article and Find Full Text PDF

Singlet oxygen (O), as an important active reagent, has found wide applications in photodynamic therapy (PDT), synthetic chemistry, and materials science. Organic conjugated aromatics serving as hosts to capture and release singlet oxygen have been systematically investigated over the last decades. Herein, we present a [6 + 6] organoplatinum(II) metallacycle by using ∼180° dipyridylanthracene donor and ∼120° Pt(II) acceptor as the building blocks, which enables the capture and release of singlet oxygen with relatively high photooxygenation and thermolysis rate constants.

View Article and Find Full Text PDF