In the context of cell-based therapies for hereditary retinal dystrophies and other retinal disorders, interest has focussed on the therapeutic potential of embryonic and tissue-specific stem cells. Stem cells are characterised by their capacity for self-renewal and by their multipotentiality. Because of these properties, they can be expanded in vitro and eventually differentiated into "desired" specialized cell types.
View Article and Find Full Text PDFBloom syndrome is a rare, autosomal recessive inherited disorder in humans. The product of the Bloom syndrome mutated gene, designated BLM, is a member of the RecQ helicase family. BLM has been proposed to function at the interface of replication and recombination, and to facilitate the repair of DNA damage.
View Article and Find Full Text PDFBloom's syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage response proteins 53BP1 and H2AX.
View Article and Find Full Text PDFThe human MSH2/6 complex is essential for mismatch recognition during the repair of replication errors. Although mismatch repair components have been implicated in DNA homologous recombination repair, the exact function of hMSH2/6 in this pathway is unclear. Here, we show that the recombinant hMSH2/6 protein complex stimulated the ability of the Bloom's syndrome gene product, BLM, to process Holliday junctions in vitro, an activity that could also be regulated by p53.
View Article and Find Full Text PDFThe hypoxia-inducible factor alpha subunits 1 and 2 (HIF-1alpha and HIF-2alpha) are subjected to oxygen-dependent asparaginyl hydroxylation, a modification that represses the carboxyl-terminal transactivation domain (CAD) at normoxia by preventing recruitment of the p300/cAMP-response element-binding protein coactivators. This hydroxylation is performed by the novel asparaginyl hydroxylase, factor-inhibiting HIF-1' (FIH-1), of which HIF-1alpha and HIF-2alpha are the only reported substrates. Here we investigated the substrate requirements of FIH-1 by characterizing its subcellular localization and by examining amino acids within the HIF-1alpha substrate for their importance in recognition and catalysis by FIH-1.
View Article and Find Full Text PDFAlcohol Alcohol
April 2004
Aims: To conduct a pilot study of the usefulness of Down Your Drink (DYD), a web-based intervention to encourage excessive drinkers to adopt a healthy pattern of drinking and reduce alcohol-associated harm. The DYD website was structured as a 6-week programme, derived from a manual which included elements of motivational approaches and cognitive behavioural therapy.
Methods: Visitors whose responses to the Fast Alcohol Screening Test were positive, and those indicating excessive alcohol consumption, were encouraged to register.
Hepatitis B virus (HBV) includes an X gene (HBx gene) that plays a critical role in liver carcinogenesis. Because centrosome abnormalities are associated with genomic instability in most human cancer cells, we examined the effect of HBx on centrosomes. We found that HBx induced supernumerary centrosomes and multipolar spindles.
View Article and Find Full Text PDFp53 inhibits tumorigenesis through a variety of functions, including mediation of cell cycle arrest, premature senescence, and apoptosis.p53 also can associate with several DNA helicases and proteins involved in homologous recombination. In this study, we show that p53, hRAD51, and hRAD54 coimmunoprecipitated and colocalized with each other at endogenous levels in normal cells.
View Article and Find Full Text PDFMalignant gliomas display aggressive local behavior and are not cured by existing therapy. Some cell lines that are considered radioresistant respond to low radiation doses (<1 Gy) with increased cell killing (low-dose hypersensitivity). In our study, 4 of 5 human glioma cell lines exhibited significant X-ray sensitivity at doses below 1 Gy.
View Article and Find Full Text PDFThe promyelocytic leukemia protein (PML) is a nuclear phosphoprotein that localizes to distinct domains in the nucleus, described as PML nuclear bodies (PML-NBs). Recent findings indicate that PML regulates the p53 response to oncogenic signals. Here, we define a p53-dependent role for PML in response to DNA damage.
View Article and Find Full Text PDFDiverse functions, including DNA replication, recombination and repair, occur during S phase of the eukaryotic cell cycle. It has been proposed that p53 and BLM help regulate these functions. We show that p53 and BLM accumulated after hydroxyurea (HU) treatment, and physically associated and co-localized with each other and with RAD51 at sites of stalled DNA replication forks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2003
Free radical-induced cellular stress contributes to cancer during chronic inflammation. Here, we investigated mechanisms of p53 activation by the free radical, NO. NO from donor drugs induced both ataxia-telangiectasia mutated (ATM)- and ataxia-telangiectasia mutated and Rad3-related-dependent p53 posttranslational modifications, leading to an increase in p53 transcriptional targets and a G(2)M cell cycle checkpoint.
View Article and Find Full Text PDFThe p53 tumor suppressor gene lies at the crossroads of multiple cellular response pathways that control a cell's fate in response to endogenous or exogenous stresses. Positive and negative regulatory loops both upstream and downstream of p53 cooperate to finely tune its functions as a transcription factor, a DNA damage sensor, and possibly, a protein-assembly scaffold. Through this plethora of activities, p53 is a major determinant of cell survival and a safeguard against genetic instability.
View Article and Find Full Text PDFBLM, WRN, and p53 are involved in the homologous DNA recombination pathway. The DNA structure-specific helicases, BLM and WRN, unwind Holliday junctions (HJ), an activity that could suppress inappropriate homologous recombination during DNA replication. Here, we show that purified, recombinant p53 binds to BLM and WRN helicases and attenuates their ability to unwind synthetic HJ in vitro.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2001
The p33ING1 protein is a regulator of cell cycle, senescence, and apoptosis. Three alternatively spliced transcripts of p33ING1 encode p47ING1a, p33ING1b, and p24ING1c. We cloned an additional ING family member, p33ING2/ING1L.
View Article and Find Full Text PDFBreast cancer is a chief cause of cancer-related mortality that affects women worldwide. About 8% of cases are hereditary, and approximately half of these are associated with germline mutations of the breast tumor suppressor gene BRCA1 (refs. 1,2).
View Article and Find Full Text PDFThe Bloom syndrome (BS) protein, BLM, is a member of the RecQ DNA helicase family that also includes the Werner syndrome protein, WRN. Inherited mutations in these proteins are associated with cancer predisposition of these patients. We recently discovered that cells from Werner syndrome patients displayed a deficiency in p53-mediated apoptosis and WRN binds to p53.
View Article and Find Full Text PDFCell cycle checkpoints are essential for the maintenance of genomic stability in response to DNA damage. We demonstrated recently that GADD45, a DNA damage-inducible protein, activates a G(2)/M checkpoint induced by either UV radiation or alkylating agents. GADD45 can interact in vivo with the G(2) cell cycle-specific kinase, Cdc2, proliferating cell nuclear antigen (PCNA), and the cell cycle kinase inhibitor p21(waf1).
View Article and Find Full Text PDFGermline mutations of the Brca1 tumor suppressor gene predispose women to breast and ovarian cancers. To study mechanisms underlying BRCA1-related tumorigenesis, we derived mouse embryonic fibroblast cells carrying a targeted deletion of exon 11 of the Brca1 gene. We show that the mutant cells maintain an intact G1-S cell cycle checkpoint and proliferate poorly.
View Article and Find Full Text PDFThis study analyses whether the inability of p53 to induce G1 arrest after the restriction point relates to an inability to modulate pRb phosphorylation. Transient p53 overexpression in normal human diploid fibroblasts and p53-deficient cancer cells led to increased levels of the cyclin-dependent kinase inhibitor p21 cip1/Waf1/Sdi1 and an accumulation of hypophosphorylated pRb in cells growing asynchronously and in cells synchronized in late G1 or M. Similarly, gamma-irradiation of asynchronous, late-G1, or S phase fibroblasts led to an increase in hypophosphorylated pRb.
View Article and Find Full Text PDFA new technique that monitors cell cycle progression over multiple cycles was used to gain insight into how p53 limits the emergence of variants with structural chromosome alterations following gamma-irradiation. G0-synchronized, p53+ (with a functional p53 pathway) normal human fibroblast and epithelial strains underwent a dose-dependent permanent arrest in the initial G0-G1 phase after irradiation. The dose-response curves indicate that a single event, such as an irreparable DNA break, may be sufficient to induce arrest.
View Article and Find Full Text PDF