Publications by authors named "Linjie Shao"

The original water in the coal rock pores plays a controlling role in the occurrence of gas. Furthermore, during the hydraulic fracturing process, pressurized fracturing fluid with a higher pressure than the original pore pressure in the fractures drives the fracturing fluid to infiltrate into the coal rock pores, thereby altering the occurrence pattern of gas and water in the original pores. However, due to the limitations of the indoor simulation device, a systematic conclusion on the impact of the original pore water and imbibition fracturing fluid on coalbed methane reservoirs has not yet been formed.

View Article and Find Full Text PDF

Water is ubiquitous in coal reservoirs, and its distribution can have a remarkable influence on the effective pore space of methane. This study conducted the combination experiments of moisture equilibrium and prefreezing nitrogen adsorption-desorption to explore the adsorption behavior of water in coal pores and thus to reveal the distribution characteristics of water in pores with different scales as well as the influence of water on pore structures. The results showed that the adsorption mechanism of water vapor undergoes a transition from monolayer to multilayer to condensation with the increase in relative humidity (RH).

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has attracted increasing attention in tumor treatment but is limited by insufficient endogenous HO. Moreover, it is challenging for monotherapy to achieve a satisfactory outcome due to tumor complexity. Herein, we developed an intelligent nanoplatform that could respond to a tumor microenvironment to induce efficient CDT without complete dependence on HO and concomitantly generate chemotherapy and oncosis therapy (OT).

View Article and Find Full Text PDF

The balance between tumor accumulation and renal clearance has severely limited the efficacy of mesoporous silica-based drug nanocarriers in cancer therapy. Herein, a pH-responsive dissociable mesoporous silica-based nanoplatform with efficient dual-drug co-delivery, tumor accumulation and rapid clearance for cancer therapy is achieved by adjusting the wetting of the mesoporous silica surface. At pH 7.

View Article and Find Full Text PDF