Publications by authors named "Lining Yao"

Actuators utilizing snap-through instabilities are widely investigated for high-performance fast actuators and shape reconfigurable structures owing to their rapid response and limited reliance on continuous energy input. However, prevailing approaches typically involve a combination of multiple bistable actuator units and achieving multistability within a single actuator unit still remains an open challenge. Here, a soft actuator is presented that uses shape memory alloy (SMA) and mixed-mode elastic instabilities to achieve intrinsically multistable shape reconfiguration.

View Article and Find Full Text PDF

Thermally cured thermoset polymers such as epoxies are widely used in industry and manufacturing due to their thermal, chemical, and electrical resistance, and mechanical strength and toughness. However, it can be challenging to 3D print thermally cured thermosets without rheological modification because they tend to flow and not hold their shape when extruded due to cure times of minutes to hours. 3D printing inside a support bath addresses this by allowing the liquid polymer to be held in place until the thermoset is fully cured and expands the structures that can be printed as extrusion is not limited to layer-by-layer.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) have grown in popularity in recent years as a stimuli-responsive material for soft actuators and shape reconfigurable structures. To make these material systems electrically responsive, they must be integrated with soft conductive materials that match the compliance and deformability of the LCE. This study introduces a design and manufacturing methodology for combining direct ink write (DIW) 3D printing of soft, stretchable conductive inks with DIW-based "4D printing" of LCE to create fully integrated, electrically responsive, shape programmable matter.

View Article and Find Full Text PDF

Thermoset elastomers are widely used high-performance materials due to their thermal stability, chemical resistance, and mechanical properties. However, established casting and molding techniques limit the overall 3D complexity of parts that can be fabricated. Advanced manufacturing methods such as 3D printing have improved design flexibility and reduced development time but have proved challenging using thermally-cured thermosets due to their viscosity, slow gelation kinetics and high surface tension.

View Article and Find Full Text PDF

Aerial seeding can quickly cover large and physically inaccessible areas to improve soil quality and scavenge residual nitrogen in agriculture, and for postfire reforestation and wildland restoration. However, it suffers from low germination rates, due to the direct exposure of unburied seeds to harsh sunlight, wind and granivorous birds, as well as undesirable air humidity and temperature. Here, inspired by Erodium seeds, we design and fabricate self-drilling seed carriers, turning wood veneer into highly stiff (about 4.

View Article and Find Full Text PDF

Because they are made of elastically deformable and compliant materials, soft robots can passively change shape and conform to their environment, providing potential advantages over traditional robotics approaches. However, existing manufacturing workflows are often labor intensive and limited in their ability to create highly integrated three-dimensional (3D) heterogeneous material systems. In this study, we address this with a streamlined workflow to produce field-deployable soft robots based on 3D printing with digital light processing (DLP) of silicone-like soft materials.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion.

View Article and Find Full Text PDF

Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities.

View Article and Find Full Text PDF

Morphing structures are often engineered with stresses introduced into a flat sheet by leveraging structural anisotropy or compositional heterogeneity. Here, we identify a simple and universal diffusion-based mechanism to enable a transient morphing effect in structures with parametric surface grooves, which can be realized with a single material and fabricated using low-cost manufacturing methods (e.g.

View Article and Find Full Text PDF

The present study examined the interactions of adolescents' temperamental effortful control and parental psychological control on adolescents' depressive symptoms in China. A total of 440 adolescents between the ages of 14 and 20 years (M = 15.7) participated in this study.

View Article and Find Full Text PDF

Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients.

View Article and Find Full Text PDF