Publications by authors named "Lining Chai"

The existence of Virtual Reality Motion Sickness (VRMS) is a key factor restricting the further development of the VR industry, and the premise to solve this problem is to be able to accurately and effectively detect its occurrence. In view of the current lack of high-accuracy and effective detection methods, this paper proposes a VRMS detection method based on entropy asymmetry and cross-frequency coupling value asymmetry of EEG. First of all, the EEG of the four selected pairs of electrodes on the bilateral brain are subjected to Multivariate Variational Mode Decomposition (MVMD) respectively, and three types of entropy values on the low-frequency and high-frequency components are calculated, namely approximate entropy, fuzzy entropy and permutation entropy, as well as three types of phase-amplitude coupling features between the low-frequency and high-frequency components, namely the mean value, standard deviation and correlation coefficient; Secondly, the difference of the entropies and the cross-frequency coupling features between the left electrodes and the right electrodes are calculated; Finally, the final feature set are selected via t-test and fed into the SVM for classification, thus realizing the automatic detection of VRMS.

View Article and Find Full Text PDF

Background: Virtual reality motion sickness (VRMS) is a key issue hindering the development of virtual reality technology, and accurate detection of its occurrence is the first prerequisite for solving the issue.

Objective: In this paper, a convolutional neural network (CNN) EEG detection model based on multi-scale feature correlation is proposed for detecting VRMS.

Methods: The model uses multi-scale 1D convolutional layers to extract multi-scale temporal features from the multi-lead EEG data, and then calculates the feature correlations of the extracted multi-scale features among all the leads to form the feature adjacent matrixes, which converts the time-domain features to correlation-based brain network features, thus strengthen the feature representation.

View Article and Find Full Text PDF