Publications by authors named "Lini Zhao"

It's of great significance to develop insulin-loaded dissolving microneedles (MNs) which are fabricated with various methods and materials for transdermal delivery of insulin to effectively and efficiently treat diabetes. In this work, we present a kind of FITC-insulin tip-loaded dissolving MNs fabricated with the mixture of polyvinyl alcohol (PVA) and sucrose using homemade PDMS MNs mold under vacuum conditions. The uniform appearance of MN arrays contributes to controlling the drug dosage well as required.

View Article and Find Full Text PDF

In this work, we prepared a stimuli-responsive system for drug delivery and controlled release by engineering the bovine serum albumin (BSA). The doxorubicin (DOX)-loaded BSA nanoparticles (NPs) were conveniently prepared using desolvation method, followed by crosslinking through Schiff base bonds, leading to pH-sensitive DOX-loaded system (DOX@BSA NPs). The resulted DOX@BSA NPs showed high drug loading capacity (21.

View Article and Find Full Text PDF

The blood-tumor barrier limits the delivery of therapeutic drugs to brain tumor tissues. Selectively opening the blood-tumor barrier is considered crucial for effective chemotherapy of glioma. RNA-binding proteins have emerged as crucial regulators in various biologic processes.

View Article and Find Full Text PDF

Up to now, high energy density batteries can be easily achieved by using alloys or conversion materials with high theoretical capacities (such as silicon-based and tin-based materials). However, these anode materials tend to sacrifice power densities while maintaining high energy densities. Herein, a sandwich-like C@SnS@TiO anode with both high capacity and high power is designed by controlling a close integration between interfacial layers.

View Article and Find Full Text PDF

The presence of the blood-tumor barrier (BTB) severely impedes the transport of anti-neoplasm drugs to the central nervous system, affecting the therapeutic effects of glioma. Glioma endothelial cells (GECs) are the main structural basis of the BTB. Circular RNA is considered to be an important regulator of endothelial cell growth.

View Article and Find Full Text PDF

Silibinin has been shown to attenuate cognitive dysfunction and inhibit amyloid-beta (Aβ) aggregation in Alzheimer's disease (AD) models. However, the underlying mechanism by which silibinin improves cognition remains poorly understood. In this study, we investigated the effect of silibinin on β-secretase levels, Aβ enzymatic degradation, and oxidative stress in the brains of APP/PS1 mice with cognitive impairments.

View Article and Find Full Text PDF

Background: RNA binding proteins (RBPs) have been reported to interact with RNAs to regulate gene expression. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which involved in the angiogenesis of tumor. The purpose of this study is to elucidate the potential roles and molecular mechanisms of MOV10 and circ-DICER1 in regulating the angiogenesis of glioma-exposed endothelial cells (GECs).

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) strongly restricts the entry of anti-glioma drugs into tumor tissues and thus decreases chemotherapy efficacy. Malignant gliomas are highly invasive tumours that use the perivascular space for invasion and co-opt existing vessels as satellite tumor form. Because regulation of the effect of noncoding RNA on BBB function is attracting growing attention, we investigated the effects of noncoding RNA on the permeability of glioma conditioned normal BBB and the mechanism involved using PIWI-associated RNA piR-DQ590027 as a starting point.

View Article and Find Full Text PDF

The blood-tumor barrier (BTB) restricts the efficient delivery of anti-glioma drugs to cranial glioma tissues. Increased BTB permeability may allow greater delivery of the therapeutic agents. Increasing evidence has revealed that PIWI proteins and PIWI-interacting RNAs (piRNAs) play an important role in tumor progression.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs, which have been considered to mediate diverse tumorigenesis including angiogenesis. The present study aims to elucidate the potential role and molecular mechanism of circ-SHKBP1 in regulating the angiogenesis of U87 glioma-exposed endothelial cells (GECs). The expression of circ-SHKBP1, but not linear SHKBP1, was significantly upregulated in GECs compared with astrocyte-exposed endothelial cells (AECs).

View Article and Find Full Text PDF

Background/aims: Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation.

View Article and Find Full Text PDF

Background: Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs.

Results: Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive primary intracranial tumor of adults and confers a poor prognosis due to high vascularization. Hence anti-angiogenic therapy has become a promising strategy for GBM treatment. In this study, the transcription factor nuclear factor of activated T-cells 5 (NFAT5) was significantly elevated in glioma samples and GBM cell lines, and positively correlated with glioma WHO grades.

View Article and Find Full Text PDF

Homeobox transcript antisense intergenic RNA (HOTAIR), as a long non-coding RNA (lncRNA), has been considered to play critical roles in the biological properties of various tumors. The purposes of this study were to investigate the role and possible molecular mechanisms of HOTAIR in regulating the permeability of blood tumor barrier (BTB) . Our present study elucidated that the expressions of HOTAIR and upstream stimulatory factor 1 (USF1) was up-regulated, but miR-148b-3p was down-regulated in glioma microvascular endothelial cells (GECs).

View Article and Find Full Text PDF

Malignant glioma is undoubtedly the most vascularized tumor of central nervous system. Angiogenesis, playing a predominant role in tumor progression, is widely considered as a key point of tumor treatment. The aim of this study was to investigate the potential effects of miR-383 on proliferation, migration, tube formation and angiogenesis of glioma-exposed endothelial cells (GECs) in vitro and to further elucidate its possible molecular mechanisms.

View Article and Find Full Text PDF

This study aims to investigate the effect of endothelial-monocyte activating polypeptide II (EMAP II) on human glioblastoma (GBM) cells and glioblastoma stem cells (GSCs) as well as its possible mechanisms. In this study, EMAP II inhibited the cell viability and decreased the mitochondrial membrane potential in human GBM cells and GSCs, and autophagy inhibitor 3-methyl adenine (3-MA) blocked these effects. Autophagic vacuoles were formed in these cells after EMAP II treatment and this phenomenon was blocked by 3-MA.

View Article and Find Full Text PDF

miR-18a represses angiogenesis and tumor evasion by weakening vascular endothelial growth factor and transforming growth factor-β signaling to prolong the survival of glioma patients, although it is thought to be an oncogene. This study investigates the potential effects of miR-18a on the permeability of the blood-tumor barrier (BTB) and its possible molecular mechanisms. An in vitro BTB model was successfully established.

View Article and Find Full Text PDF

The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs.

View Article and Find Full Text PDF

Background And Aims: Great interest persists in useful therapeutic targets in glioblastoma (GBM). Deregulation of microRNAs (miRNAs) expression has been associated with cancer formation through alterations in gene targets. In this study, we reported the role of miR-101 in human glioblastoma stem cells (GSCs) and the potential mechanisms.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common central nervous system tumor and the molecular mechanism driving its development is still largely unknown, limiting the treatment of this disease. In the present study, we explored the potential role of miR-152 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. Our results proved that miR-152 was down-regulated in human GSCs.

View Article and Find Full Text PDF

The purposes of this study were to investigate the potential roles of miR-34c in regulating blood-tumor barrier (BTB) functions and its possible molecular mechanisms. The over-expression of miR-34c significantly impaired the integrity and increased the permeability of BTB, which were detected in an in vitro BTB model by transendothelial electric resistance and horseradish peroxidase flux assays, respectively. Meanwhile, real-time quantitative PCR (qRT-PCR), Western blot and immunofluorescence assays successively demonstrated downregulation of ZO-1, occludin, and claudin-5 and miR-34c silencing uncovered the opposite results.

View Article and Find Full Text PDF

Blood-tumor barrier (BTB) constitutes an efficient organization of tight junctions that impairs the delivery of therapeutic drugs. However, the methods and molecular mechanisms underlying the BTB opening remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of various biologic processes and therapeutic targets.

View Article and Find Full Text PDF

This study aims to determine the effects of vascular endothelial growth factor (VEGF), papaverine (PA), and the combination of VEGF and PA on the permeability of the blood-tumor barrier (BTB) and to determine possible molecular mechanisms contributing to the effects. In the rat C6 glioma model, the extravasation of Evans blue (EB) through the BTB was increased significantly by VEGF and PA. VEGF-induced and PA-induced increase of EB extravasation was further increased after combining VEGF with PA infusion.

View Article and Find Full Text PDF

Blood-tumor barrier (BTB) constitutes an efficient organization of tight junctions which significantly reduce permeability for chemotherapy drugs. Krüppel-like factor 4 (KLF4), a member of the Krüppel-like family, has been documented in endothelial cells and may serve as an essential regulator of endothelial barrier function. However, our knowledge about the expression and function of KLF4 in the endothelial cells of BTB still remains unclear.

View Article and Find Full Text PDF