Publications by authors named "Linhe Jin"

Prosthetic heart valve replacement is an effective therapy for patients with valvular heart disease. New-type polymer materials provide potential choices of material for preparing prosthetic heart valves. In this study, we focused on enhancing the biocompatibility of polystyrene-block-isobutylene-block-styrene (SIBS) by surface modification with an extracellular matrix (ECM).

View Article and Find Full Text PDF

With the coming of an aging society and the emergence of transcatheter valve technology, the implantation of bioprosthetic heart valves (BHVs) in patients with valvular disease has significantly increased worldwide. Currently, most clinically available BHVs are crosslinked with glutaraldehyde (GLUT). However, the GLUT treated BHV is less durable due to the combined effect of multiple factors such as cytotoxicity, immune responses, and calcification.

View Article and Find Full Text PDF

Bioprosthetic heart valve (BHV) replacement is increasingly used for treating valve-related diseases worldwide but the current commercially used BHVs treated with glutaraldehyde (Glut) often failed within 12-15 years due to degradation, thrombosis, inferior biocompatibility, and calcification. Herein, 3-glycidyloxypropyl trimethoxysilane (GPTMS) was used to crosslink porcine pericardium (PP) at the concentration (vol/vol) of 0.25%, 1%, 2%, and 4% and their performance for potential application in BHVs was evaluated.

View Article and Find Full Text PDF

The rate of adoption of transcatheter aortic valve implantation (TAVI) is increasing rapidly, due to the procedure being less invasive. However, TAVI still faces problems relating to durability, the potential incidence of thrombosis, and the inconvenience of storage in glutaraldehyde (Glut) solution. In this work, a tough hydrogel poly(N-acryloyl glycinamide) (pNAGA) is hybridized with Glut-crosslinked porcine pericardium (Glut-PP) via in situ polymerization and glycerolization, so as to obtain dry leafet material for the fabrication of a pre-mounted bioprosthetic heart valve (BHV).

View Article and Find Full Text PDF

Transcatheter aortic valve implantation (TAVI) has been developed years ago for patients who cannot undergo a surgical aortic valve replacement (SAVR). Although TAVI possesses the advantages of lower trauma and simpler manipulation compared to SAVR, the need for storage in glutaraldehyde (GLU) and a tedious intraoperative assembly process have caused great inconvenience for its further application. A pre-mounted TAVI valve assembled by mounting a dry valve frame to a delivery system is expected to address these problems.

View Article and Find Full Text PDF

The aging population and the development of transcatheter aortic valve replacement (TAVR) technology largely expand the usage of bioprosthetic heart valves (BHVs) in patients. Almost all of the commercial BHVs are treated with glutaraldehyde (GA). However, the GA-treated BHVs display the drawbacks such as extracellular matrix (ECM) degradation, cytotoxicity, immune response, and calcification.

View Article and Find Full Text PDF

In recent years, the number of heart valve replacements has multiplied with valve diseases because of aging populations and the surge in rheumatic heart disease in young people. Among them, bioprosthetic heart valves (BHVs) have become increasingly popular. Transcatheter aortic valve implantation (TAVI) valve as an emerging BHV has been increasingly applied to patients.

View Article and Find Full Text PDF