Eukaryotic elongation factor 2 kinase (eEF2K) has been considered as a putative target for cancer therapy; however, the underlying mechanisms of eEF2K in triple-negative breast cancer (TNBC) progression remain to be fully elucidated. In this study, it is shown that eEF2K is highly expressed in TNBC and is associated with poor prognosis. In vitro, in vivo, and patient-derived organoid experiments demonstrate that knockdown of eEF2K significantly impedes progression of TNBC.
View Article and Find Full Text PDFJ Med Chem
September 2024
eEF2K, an atypical alpha-kinase, is responsible for regulating protein synthesis and energy homeostasis. Aberrant eEF2K function has been linked to various human cancers, including triple-negative breast cancer (TNBC). However, limited cellular activity of current eEF2K modulators impedes their clinical application.
View Article and Find Full Text PDFDysregulated eEF2K expression is implicated in the pathogenesis of many human cancers, including triple-negative breast cancer (TNBC), making it a plausible therapeutic target. However, specific eEF2K inhibitors with potent anti-cancer activity have not been available so far. Targeted protein degradation has emerged as a new strategy for drug discovery.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is a particularly invasive subtype of breast cancer and usually has a poor prognosis due to the lack of effective therapeutic targets. Approximately 25% of TNBC patients carry a breast cancer susceptibility gene1/2 (BRCA1/2) mutation. Clinically, PARP1 inhibitors have been approved for the treatment of patients with BRCA1/2-mutated breast cancer through the mechanism of synthetic lethality.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
January 2021
Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis. However, the anti-atherogenic mechanisms of M. fragrans are still to be addressed.
View Article and Find Full Text PDFLipoprotein lipase (LPL) plays a central role in hydrolyzing triglyceride and its deficiency leads to atherosclerosis. Artesunate (ART), a derivative of artemisinin, has been demonstrated that ART reduces the formation of atherosclerotic plaques. However, it remains unclear whether ART-alleviated atherosclerotic lesion is involved in regulating lipid metabolism.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
May 2020
Background And Aims: Fargesin mainly functions in the improvement of lipid metabolism and the inhibition of inflammation, but the role of fargesin in atherogenesis and the molecular mechanisms have not been defined. We aimed to explore if and how fargesin affects atherosclerosis by regulating lipid metabolism and inflammatory response.
Methods And Results: ApoE mice were fed a high-fat diet to form atherosclerotic plaques and then administrated with fargesin or saline via gavage.
Biochim Biophys Acta Mol Cell Biol Lipids
February 2020
Objective: Angiopoietin-1 (Ang-1), a secreted protein, mainly regulates angiogenesis. Ang-1 has been shown to promote the development of atherosclerosis, whereas little is known about its effects on lipid metabolism and inflammation in this process.
Method: Ang-1 was transfected into ApoE mice via lentiviral vector or incubated with THP-1 derived macrophages.
CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism.
View Article and Find Full Text PDFPregnancy-associated plasma protein-A (PAPP-A), a member of the metzincin metalloproteinase superfamily, can enhance local insulin-like growth factor (IGF) bioavailability through proteolytic cleavage of three IGF binding proteins. In patients with coronary atherosclerosis disease (CAD), elevated PAPP-A levels are significantly associated with a higher risk of cardiovascular events. Accumulating evidence indicates that this protease exerts a proatherogenic effect by altering a variety of pathological processes involved in atherosclerosis, including lipid accumulation, vascular inflammation, endothelial dysfunction, vascular smooth muscle cell proliferation and migration, plaque stability, and thrombus formation.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
September 2018
Cholesterol is one of the major components of biological membranes and has an important function in osteoclast formation and survival. It has been reported that high-density lipoprotein (HDL) promotes cholesterol efflux from osteoclasts and induces their apoptosis, but the underlying mechanisms are unclear. In this study, we investigated how HDL promotes osteoclast cholesterol efflux and explored its effect on osteoclast formation and survival.
View Article and Find Full Text PDFAtherosclerosis is a dyslipidemia disease characterized by foam cell formation driven by the accumulation of lipids. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is known to suppress the development of atherosclerosis via its anti-inflammatory properties, but it is not yet known whether vaspin affects cholesterol efflux in THP-1 macrophage-derived foam cells. Here, we investigated the effects of vaspin on ABCA1 expression and cholesterol efflux, and further explored the underlying mechanism.
View Article and Find Full Text PDF