Publications by authors named "Linhan Jiang"

Background: Interferon-alpha1b (IFN-α1b) has shown remarkable therapeutic potential as adjuvant therapy for melanoma. This study aimed to develop five machine learning models to evaluate the efficacy of postoperative IFN-α1b in patients with advanced melanoma.

Methods: We retrospectively analyzed 113 patients with the American Joint Committee on Cancer (AJCC) stage III-IV melanoma who received postoperative IFN-α1b therapy between July 2009 and February 2024.

View Article and Find Full Text PDF
Article Synopsis
  • - The study addresses the challenges in detecting disease biomarkers due to issues like autofluorescence in biological samples, proposing a new method using self-assembled natural proteins for improved biosensing.
  • - Researchers created a novel nanoprobe, a photon upconversion supramolecular assembly (PUSA), which is small, biocompatible, and can effectively detect urinary sarcosine, a biomarker for prostate cancer, under near-infrared light.
  • - This innovative approach not only enables easy visual identification of prostate cancer markers in urine samples but also allows for accurate quantification, marking significant progress in clinical diagnostics for malignant diseases.
View Article and Find Full Text PDF

Oxygen-mediated triplet-triplet annihilation upconversion (TTA-UC) quenching limits the application of such organic upconversion materials. Here, we report that the photooxidation of organic amines is an effective and versatile strategy to suppress oxygen-mediated upconversion quenching in both organic solvents and aqueous solutions. The strategy is based on the dual role of organic amines in photooxidation, i.

View Article and Find Full Text PDF

Introduction: Acetyl-CoA synthetase 2 (ACSS2), one of the enzymes that catalyze the conversion of acetate to acetyl-CoA, has been proved to be an oncogene in various cancers. However, the function of ACSS2 is still largely a black box in melanoma.

Methods: The ACSS2 expression was detected in melanoma cells and melanocytes at both protein and mRNA levels.

View Article and Find Full Text PDF

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP).

View Article and Find Full Text PDF

Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching.

View Article and Find Full Text PDF

The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM.

View Article and Find Full Text PDF

Clusters are considered to become increasingly significant for elaborating the nanocrystal's formation mechanism. However, capturing the clusters with high chemical potential is challenging because of the lack of effective strategies. In this work, the key role of ligand-solvent interaction has been revealed for the stabilization of clusters in silver telluride synthesis.

View Article and Find Full Text PDF

Triplet-triplet annihilation upconversion (TTA-UC) has considerable potential for emerging applications in bioimaging, optogenetics, photoredox catalysis, solar energy harvesting, etc. Fluoroboron dipyrrole (Bodipy) dyes are an essential type of annihilator in TTA-UC. However, conventional Bodipy dyes generally have large molar extinction coefficients and small Stokes shifts (<20 nm), subjecting them to severe internal filtration effects at high concentrations, and resulting in low upconversion quantum efficiency of TTA-UC systems using Bodipy dyes as annihilators.

View Article and Find Full Text PDF

Real-time visualization of individual viral mRNA translation activities in live cells is essential to obtain critical details of viral mRNA dynamics and to detect its transient responses to environmental stress. Fluorogenic RNA aptamers are powerful tools for real-time imaging of mRNA in live cells, but monitoring the translation activity of individual mRNAs remains a challenge due to their intrinsic photophysical properties. Here, we develop a genetically encoded turn-on 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA nanozipper with superior brightness and high photostability by in situ self-assembly of multiple nanozippers along single mRNAs.

View Article and Find Full Text PDF
Article Synopsis
  • The growth of malignant tumors is closely tied to the formation of new blood vessels, and vasculogenic mimicry plays a critical role in supplying blood early on.
  • This study developed a highly bright fluorescent label that works in the near-infrared-II region for better imaging of tumors and tissue sections.
  • By using PbS quantum dots combined with horseradish peroxidase, researchers achieved real-time, high-resolution imaging of tumor vessels, which aids in differentiating between benign and malignant tumors by analyzing blood supply patterns.
View Article and Find Full Text PDF

Selective photoactivation of inert aryl halides is a fundamental challenge in organic synthesis. Specially, the long-wavelength red light is more desirable than the widely-applied blue light as the excitation source for photoredox catalysis, due to its superior penetration depth. However, the long-wavelength red light-driven photoactivation of inert aryl halides remains a challenge, mainly because of the low energy of the single long-wavelength red photon.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a metal-free method for activating anti-cancer drugs using long-wavelength light through a process called triplet fusion.
  • This technique combines a light-sensitive molecule (BODIPY) with a drug that can be released upon light exposure (perylene-based).
  • When tested in mice, this new method showed effective tumor inhibition with lower light power compared to existing therapies, indicating promising potential for future applications in cancer treatment and other medical fields.
View Article and Find Full Text PDF

Chemoresistance is a major obstacle to hepatocellular carcinoma (HCC) chemotherapy. Our previous study found that long noncoding RNA lncARSR (lncRNA Activated in RCC with Sunitinib Resistance) activated Akt signaling via repressing phosphatase and tensin homolog (PTEN) during doxorubicin resistance in HCC. The purpose of this study is to further explore lncARSR-mediated mechanisms and roles during doxorubicin resistance in HCC.

View Article and Find Full Text PDF

Purpose: This study aims to inform previous clinical assessments to better understand the total risk of hypertension with atezolizumab and bevacizumab (hereafter referred to as "A-B") in cancer patients, and reduce future incidence of hypertension-related cardiovascular complications.

Methods: Databases, including PubMed, Embase, Cochrane, and Web of Science were searched to identify relevant studies, which were retrieved from inception to March 6, 2021. Studies focused on cancer patients treated with A-B that provided data on hypertension were included.

View Article and Find Full Text PDF