MicroRNAs (miRNAs) have emerged as important cellular regulators (tumor suppressors, pro-oncogenic factors) of cancer and metastasis. Most published studies focus on a single miRNA when characterizing the role of small RNAs in cancer. However, ~30% of human miRNA genes are organized in clustered units that are often co-expressed, indicating a complex and coordinated system of noncoding RNA regulation.
View Article and Find Full Text PDFA tapered optical fiber (TOF) plasmonic biosensor was fabricated and used for the sensitive detection of a panel of microRNAs (miRNAs) in human serum obtained from noncancer and prostate cancer (PCa) patients. Oncogenic and tumor suppressor miRNAs , , miR-200b, miR-141, and miR-21 were tested as predictive cancer biomarkers since multianalyte detection minimizes false-positive and false-negative rates and establishes a strong foundation for early PCa diagnosis. The biosensing platform integrates metallic gold triangular nanoprisms (AuTNPs) laminated on the TOF to excite surface plasmon waves in the supporting metallic layer and enhance the evanescent mode of the fiber surface.
View Article and Find Full Text PDFLabelling phospholipid membranes with luminophores without altering the biophysical characteristics of the system is particularly challenging due to the small size of the phospholipid molecules and the sensitivity of membrane properties to the presence of fused heterocyclic molecules. Here the design and synthesis of a luminescent lipid mimetic Ir(III) N-heterocyclic carbene complex of the form [Ir(ppy)(C^N)] (where ppy = 2-(phenyl)-pyridine and C^N is a N-heterocyclic carbene ligand) conjugated to stearic acid is described. This complex was synthesised by the reaction of an acetate functionalised Ir(III) precursor complex with tert-butyl N-(2-aminoethyl)carbamate (mono-BOC protected ethylene diamine) and after deprotection of the amine group this complex was coupled to stearic acid using the peptide coupling reagent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC).
View Article and Find Full Text PDFA series of five heteroleptic Ir(iii) complexes of the general form Ir(dfppy)2(C^C) have been prepared (where dfppy represents 2-(2,4-difluorophenyl)pyridine and C^C represents a bidentate cyclometalated phenyl substituted imidazolylidene ligand). The cyclometalated phenyl ring of the imidazolylidene ligand was either unsubstituted or substituted with electron donating (OMe and Me) or electron withdrawing (Cl and F) groups in the 2 and 4 positions. The synthesised Ir(iii) complexes have been characterised by elemental analysis, NMR spectroscopy, cyclic voltammetry and electronic absorption and emission spectroscopy.
View Article and Find Full Text PDF