Stem Cell Res Ther
September 2024
Background: Understanding the role of cytokines in tooth development is critical for advancing dental tissue engineering. Fibroblast growth factor 9 (FGF9) is the only FGF consistently expressed throughout dental epithelial tissue, from the initiation of tooth bud formation to tooth maturation. However, mice lacking Fgf9 (Fgf9) surprisingly show no obvious abnormalities in tooth development, suggesting potential compensation by other FGFs.
View Article and Find Full Text PDFBone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear.
View Article and Find Full Text PDFThis study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2024
Van der Waals (vdW) gap is a significant feature that distinguishes vdW magnets from traditional magnets. Manipulating the magnetic properties by changing the vdW gap has been hot topic in condensed matter research. Here we report a re-emerging magnetic order induced by pressure in a correlated vdW antiferromagnetic insulator NiPS.
View Article and Find Full Text PDFUveal melanoma (UM), the most frequent primary intraocular tumor in adults, has poor prognosis. High C-C motif chemokine ligand 18 (CCL18) has been detected in various tumors and is closely correlated with patients' clinicopathological characteristics. However, the essential role of CCL18 in UM remains unclear.
View Article and Find Full Text PDFThe presence of the van der Waals gap in layered materials creates a wealth of intriguing phenomena different to their counterparts in conventional materials. For example, pressurization can generate a large anisotropic lattice shrinkage along the stacking orientation and/or a significant interlayer sliding, and many of the exotic pressure-dependent properties derive from these mechanisms. Here we report a giant piezoresistivity in pressurized β'-InSe.
View Article and Find Full Text PDFAcid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties.
View Article and Find Full Text PDFSerine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear.
View Article and Find Full Text PDFAdhesion G protein-coupled receptor A1 (ADGRA1) belongs to the G protein-coupled receptor (GPCR) family, and its physiological function remains largely unknown. We found that Adgra1 is highly and exclusively expressed in the brain, suggesting that Adgra1 may be involved in the regulation of neurological behaviors including anxiety, depression, learning and memory. To this end, we comprehensively analyzed the potential role of ADGRA1 in the neurobehaviors of mice by comparing Adgra1 and their wild-type (wt) littermates.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) is characterized by pathologic angiogenesis in retina, and remains a leading cause of blindness in children. Although enhanced extracellular adenosine is markedly increased in response to retinal hypoxia, adenosine acting at the A and A receptors has the opposite effect on pathologic angiogenesis. Herein, the oxygen-induced retinopathy (OIR) model of ROP was used to demonstrate that pharmacologic and genetic inactivation of CD73 (the key 5'-ectonucleotidase for extracellular generation of adenosine) did not affect normal retinal vasculature development but exacerbated intravitreal neovascularization at postnatal day (P) 17 and delayed revascularization at P21 of OIR.
View Article and Find Full Text PDFSerine proteases (PRSS) constitute nearly one-third of all proteases, and many of them have been identified to be testis-specific and play significant roles during sperm development and male reproduction. PRSS54 is one of the testis-specific PRSS in mouse and human but its physiological function remains largely unclear. In the present study, we demonstrate in detail that PRSS54 exists not only in testis but also in mature sperm, exhibiting a change in protein size from 50 kDa in testis to 42 kDa in sperm.
View Article and Find Full Text PDFOur previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37 mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups.
View Article and Find Full Text PDFStudies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2021
The electronic and magnetic properties of the two-dimensional TiCMXenes have attracted a lot of interests due to its potential applications. In this paper, TiCMXenes and Mn-doped TiCMXenes are synthesized and investigated. The experimental data shows that Mnions are homogeneously and randomly intercalated between TiCsheets as function terminals, which increase the interlayer distance between TiCsheets and offer a mass of uncoupled magnetic moment.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2021
A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for sperm migration from the uterus into the oviduct and sperm-egg binding in mice. Disruption of PRSS37 results in male infertility concurrent with the absence of mature ADAM3 from cauda epididymal sperm. However, how PRSS37 modulates ADAM3 maturation remains largely unclear.
View Article and Find Full Text PDFAdhesion G protein-coupled receptor A1 (ADGRA1, also known as GPR123) belongs to the G protein-coupled receptors (GPCRs) family and is well conserved in the vertebrate lineage. However, the structure of ADGRA1 is unique and its physiological function remains unknown. Previous studies have shown that Adgra1 is predominantly expressed in the central nervous system (CNS), indicating its important role in the transduction of neural signals.
View Article and Find Full Text PDFFibroblast growth factor 9 (Fgf9) is a well-known factor that regulates bone development; however, its function in bone homeostasis is still unknown. Previously, we identified a point mutation in the FGF9 gene (p.Ser99Asn, S99N) and generated an isogeneic knock-in mouse model, which revealed that this loss-of-function mutation impaired early joint formation and was responsible for human multiple synostosis syndrome 3 (SYNS3).
View Article and Find Full Text PDFTransl Cancer Res
November 2020
In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints).
View Article and Find Full Text PDFJ Phys Condens Matter
June 2020
The structure and magnetic properties are studied in co-doped CsKCuBrCland pressurized CsCuBrsamples. No structural phase transition is found with doping concentration⩽ 0.1 and pre-compression pressure up to 4.
View Article and Find Full Text PDF