Ochratoxin A (OTA), a secondary fungal metabolite known for its nephrotoxic effects, is prevalent in various feeds and food items. Our recent study suggests that OTA-induced nephrotoxicity is linked to the Sigma-1 receptor (Sig-1R)-mediated mitochondrial pathway apoptosis in human proximal tubule epithelial-originated kidney-2 (HK-2) cells. However, the contribution of Sig-1R to OTA-induced nephrotoxicity involving other forms of regulated cell death, such as ferroptosis, remains unexplored.
View Article and Find Full Text PDFThe nephrotoxic secondary fungal metabolite ochratoxin A (OTA) is ubiquitously existed in foodstuffs and feeds. Although our earlier research provided preliminary evidence that endoplasmic reticulum (ER) was crucial in OTA-induced nephrotoxicity, more research is necessary to understand the fine-tune mechanisms involving ER stress (ERS), ER-phagy, and apoptosis. In the present study, the cell viability and protein expressions of human proximal tubule epithelial (HK-2) cells in response to OTA and/or chloroquine/rapamycin/sodium phenylbutyrate/tunicamycin were determined via cell viability assay, apoptosis analysis, and Western blot analysis.
View Article and Find Full Text PDFOchratoxin A (OTA), a secondary fungal metabolite with nephrotoxicity, is widespread in numerous kinds of feeds and foodstuffs. Ursolic acid (UA), a water-insoluble pentacyclic triterpene acid, exists in a wide range of food materials and medicinal plants. Our earlier researches provided preliminary evidence that mitochondria- and mitochondria-associated endoplasmic reticulum membranes (MAMs)-located stress-responsive Lon protease 1 (Lonp1) had a protective function in OTA-induced nephrotoxicity, and the renoprotective function of UA against OTA partially due to Lonp1.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a persistent organic pollutant that is widely distributed in the natural environment. Cohort study showed that PFOA-producing workers displayed a significant increase for mortality of liver cancer and liver cirrhosis. However, the underlying mechanism of PFOA-induced hepatotoxicity is far from clear.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2020
Many organic molecules have unique magnetic properties and can potentially serve as excellent molecular spin devices, which is worth exploring deeply. Here, the spin transport properties of Mn, Fe, Co and Cu porphyrin dimer devices are investigated based on the first principles method. The spin filtering efficiencies of these molecular devices are maintained at 100% within certain applied voltage ranges and magnetoresistance ratios are higher than 10% which increase as the voltage increases.
View Article and Find Full Text PDF