Publications by authors named "Lingyan Ruan"

Benzo(a)pyrene (BaP), a pervasive environmental pollutant with endocrine-disrupting properties, has been associated with detrimental effects on pregnancy. During early pregnancy, the endometrial decidualization process is critical for embryo implantation. Abnormal decidualization can lead to implantation failure, aberrant placental formation, and pregnancy loss.

View Article and Find Full Text PDF
Article Synopsis
  • This systematic review and meta-analysis evaluated the effects of glucagon-like peptide 1 receptor agonists (GLP-1RAs) on different types of body fat in people with diabetes or non-alcoholic fatty liver disease.
  • The analysis included 13 randomized controlled trials and found that GLP-1RAs significantly reduced visceral and subcutaneous fat, body weight, and BMI, while also improving blood sugar control and insulin resistance.
  • Overall, the study supports the use of GLP-1RAs as effective treatments for reducing fat accumulation and improving metabolic health in individuals with diabetes and obesity-related conditions.
View Article and Find Full Text PDF

Topographical cues have been widely used to facilitate cell fusion in skeletal muscle formation. However, an unexpected yet consistent chiral orientation of myotubes deviating from the groove boundaries is commonly observed but has long been unattended. In this study, we report a method to guide the formation of skeletal myotubes into scalable and controlled patterns.

View Article and Find Full Text PDF

Background: There have been several controversies about the correlation between vitamin D and depression. This study aimed to investigate the relationship between vitamin D supplementation and the incidence and prognosis of depression and to analyze the latent effects of subgroups including population and supplement strategy.

Methods: A systematic search for articles before July 2021 in databases (PubMed, EMBASE, Web of Science, and the Cochrane Library) was conducted to investigate the effect of vitamin D supplementation on the incidence and prognosis of depression.

View Article and Find Full Text PDF

We present a method to create light field display using a single projector and an array of plane mirrors. Mirrors can reproduce densely arranged virtual projectors regardless of the physical size of the real projector, thus producing a light field display of competitive ray density. We propose an ellipsoidal geometric framework and a design pipeline, and use parametric modelling technique to automatically generate the display configurations satisfying target design parameters.

View Article and Find Full Text PDF

The hierarchical control in biogenic minerals, from precise nanomorphology control to subsequent macroscopic assembly, remains a formidable challenge in artificial synthesis. Studies in biomineralization, however, are largely limited to atomic andmolecular scale crystallization, devoting little attention to biomolecular higher-order structures (HOSs) which critically impact long-range assembly of biominerals. Here we demonstrate a biomimetic route and quantitative simulations that explore peptide HOSs on guiding nanocrystal formation and anisotropic assembly into hierarchical structures.

View Article and Find Full Text PDF

Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability.

View Article and Find Full Text PDF

Controlling the morphology of nanocrystals (NCs) is of paramount importance for both fundamental studies and practical applications. The morphology of NCs is determined by the seed structure and the following facet growth. While means for directing facet formation in NC growth have been extensively studied, rational strategies for the production of NCs bearing structure defects in seeds have been much less explored.

View Article and Find Full Text PDF

Structural defects/grain boundaries in metallic materials can exhibit unusual chemical reactivity and play important roles in catalysis. Bulk polycrystalline materials possess many structural defects, which is, however, usually inaccessible to solution reactants and hardly useful for practical catalytic reactions. Typical metallic nanocrystals usually exhibit well-defined crystalline structure with few defects/grain boundaries.

View Article and Find Full Text PDF

The integration of multiple synergistic catalytic systems can enable the creation of biocompatible enzymatic mimics for cascading reactions under physiologically relevant conditions. Here we report the design of a graphene-haemin-glucose oxidase conjugate as a tandem catalyst, in which graphene functions as a unique support to integrate molecular catalyst haemin and enzymatic catalyst glucose oxidase for biomimetic generation of antithrombotic species. Monomeric haemin can be conjugated with graphene through π-π interactions to function as an effective catalyst for the oxidation of endogenous L-arginine by hydrogen peroxide.

View Article and Find Full Text PDF

Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet.

View Article and Find Full Text PDF

Biomolecules capable of fabricating complex nanomaterials with required functions in nature have been exploited to artificially control nanomaterial synthesis in all aspects. This tutorial review provides an overview of recent efforts in biomimetic synthesis and the relevant mechanistic studies on biomolecular specificities toward material surfaces. It starts with a discussion of the state-of-the-art progress in colloidal nanocrystal synthesis, wherein the importance of the interfacial control over nanoscale building blocks discloses the potential of exploiting biomolecular recognition properties in nanostructure synthesis.

View Article and Find Full Text PDF

Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50 mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density.

View Article and Find Full Text PDF

Shape-controlled synthesis requires rigorous kinetic control over both nucleation and growth. For platinum (Pt), to date it is still challenging to generate twinned seeds in nucleation in a controllable fashion. Here, we report that a specific Pt binding peptide BP7A is able to mediate and stabilize single-twinned seeds formation at the nucleation stage under mild conditions.

View Article and Find Full Text PDF

With the prevalence of gene expression studies and the relatively low reproducibility caused by insufficient sample sizes, it is natural to consider joint analysis that could combine data from different experiments effectively to achieve improved accuracy. We present in this article a model-based approach for better identification of differentially expressed genes by incorporating data from different studies. The model can accommodate in a seamless fashion a wide range of studies including those performed at different platforms by fitting each data with different set of parameters, and/or under different but overlapping biological conditions.

View Article and Find Full Text PDF

The properties of a nanocrystal are heavily influenced by its shape. Shape control of a colloidal nanocrystal is believed to be a kinetic process, with high-energy facets growing faster then vanishing, leading to nanocrystals enclosed by low-energy facets. Identifying a surfactant that can specifically bind to a particular crystal facet is critical, but has proved challenging to date.

View Article and Find Full Text PDF

Finite gaussian mixture models are widely used in statistics thanks to their great flexibility. However, parameter estimation for gaussian mixture models with high dimensionality can be challenging because of the large number of parameters that need to be estimated. In this letter, we propose a penalized likelihood estimator to address this difficulty.

View Article and Find Full Text PDF