The performance of biomaterials in a biological environment is largely influenced by the surface properties of the biomaterials. In particular, grafted targeting ligands significantly impact the subsequent cellular interactions. The utilisation of a grafted epidermal growth factor (EGF) is effective for targeted delivery of drugs to tumours, but the amount of these biological attachments cannot be easily quantified as most characterization methods could not detect the extremely low amount of EGF ligands grafted on the surface of nanoparticles.
View Article and Find Full Text PDFAcquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance.
View Article and Find Full Text PDFHollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation.
View Article and Find Full Text PDF