Publications by authors named "Lingxi Lu"

Article Synopsis
  • This study explores how different levels of linguistic structure (syllables, words, sentences) in background speech affect the ability to recognize target speech in noisy situations, like a cocktail party.
  • Thirty-six participants were tested on their recognition of target speech while it was masked by competing speech, with the complexity and spatial location of the background speech varied.
  • Results showed that more complex linguistic background (like sentences) caused greater interference in recognizing target speech, confirming that both linguistic and spatial factors play a role in how we process speech in challenging listening environments.
View Article and Find Full Text PDF

Magnetoencephalography (MEG) is a powerful non-invasive diagnostic modality for presurgical epilepsy evaluation. However, the clinical utility of MEG mapping for localising epileptic foci is limited by its low efficiency, high labour requirements, and considerable interoperator variability. To address these obstacles, we proposed a novel artificial intelligence-based automated magnetic source imaging (AMSI) pipeline for automated detection and localisation of epileptic sources from MEG data.

View Article and Find Full Text PDF

Speech comprehension requires listeners to rapidly parse continuous speech into hierarchically-organized linguistic structures (i.e. syllable, word, phrase, and sentence) and entrain the neural activities to the rhythm of different linguistic levels.

View Article and Find Full Text PDF

Native speakers excel at parsing continuous speech into smaller elements and entraining their neural activities to the linguistic hierarchy at different levels (e.g., syllables, phrases, and sentences) to achieve speech comprehension.

View Article and Find Full Text PDF

Continuous speech is organized into a hierarchy of rhythms. Accurate processing of this rhythmic hierarchy through the interactions of auditory and motor systems is fundamental to speech perception and production. In this mini-review, we aim to evaluate the implementation of behavioral auditory-motor synchronization paradigms when studying rhythm processing in speech.

View Article and Find Full Text PDF

Humans excel at constructing mental representations of speech streams in the absence of external auditory input: the internal experience of speech imagery. Elucidating the neural processes underlying speech imagery is critical to understanding this higher-order brain function in humans. Here, using functional magnetic resonance imaging, we investigated the shared and distinct neural correlates of imagined and perceived speech by asking participants to listen to poems articulated by a male voice (perception condition) and to imagine hearing poems spoken by that same voice (imagery condition).

View Article and Find Full Text PDF

The adult brain can efficiently track both lower-level (i.e., syllable) and higher-level (i.

View Article and Find Full Text PDF

Spatial hearing in humans is a high-level auditory process that is crucial to rapid sound localization in the environment. Both neurophysiological models with animals and neuroimaging evidence from human subjects in the wakefulness stage suggest that the localization of auditory objects is mainly located in the posterior auditory cortex. However, whether this cognitive process is preserved during sleep remains unclear.

View Article and Find Full Text PDF

Under a "cocktail party" environment, listeners can utilize prior knowledge of the content and voice of the target speech [i.e., auditory speech priming (ASP)] and perceived spatial separation to improve recognition of the target speech among masking speech.

View Article and Find Full Text PDF

Speech mental imagery is a quasi-perceptual experience that occurs in the absence of real speech stimulation. How imagined speech with higher-order structures such as words, phrases and sentences is rapidly organized and internally constructed remains elusive. To address this issue, subjects were tasked with imagining and perceiving poems along with a sequence of reference sounds with a presentation rate of 4 Hz while magnetoencephalography (MEG) recording was conducted.

View Article and Find Full Text PDF

Under a "cocktail-party" environment with simultaneous multiple talkers, recognition of target speech is effectively improved by a number of perceptually unmasking cues. It remains unclear whether emotions embedded in the target-speaker's voice can either improve speech perception alone or interact with other cues facilitating speech perception against a masker background. This study used two target-speaker voices with different emotional valences to examine whether recognition of target speech is modulated by the emotional valence when the target speech and the maskers were perceptually co-located or separated.

View Article and Find Full Text PDF

Rapid and efficient speech processing benefits from the prediction derived from prior expectations based on the identification of individual words. It is known that speech processing is carried out within a distributed frontotemporal network. However, the spatiotemporal causal dynamics of predictive brain mechanisms in sound-to-meaning mapping within this network remain unclear.

View Article and Find Full Text PDF

The subjective inner experience of mental imagery is among the most ubiquitous human experiences in daily life. Elucidating the neural implementation underpinning the dynamic construction of mental imagery is critical to understanding high-order cognitive function in the human brain. Here, we applied a frequency-tagging method to isolate the top-down process of speech mental imagery from bottom-up sensory-driven activities and concurrently tracked the neural processing time scales corresponding to the two processes in human subjects.

View Article and Find Full Text PDF

Prepulse inhibition (PPI) can be modulated by both the Val158Met (rs4680) polymorphism of the Catechol-O-Methyltransferase (COMT) gene and the menstrual-cycle-related hormone fluctuations, each of which affects the subcortical/cortical dopamine metabolism. PPI can also be modulated by attention. The attentional modulation of PPI (AMPPI) is sensitive to psychoses.

View Article and Find Full Text PDF

Under a noisy "cocktail-party" listening condition with multiple people talking, listeners can use various perceptual/cognitive unmasking cues to improve recognition of the target speech against informational speech-on-speech masking. One potential unmasking cue is the emotion expressed in a speech voice, by means of certain acoustical features. However, it was unclear whether emotionally conditioning a target-speech voice that has none of the typical acoustical features of emotions (i.

View Article and Find Full Text PDF

Visual mental imagery forms mental representations of visual objects when correspondent stimuli are absent and shares some characters with visual perception. Both the vertex-positive-potential (VPP) and N170 components of event-related potentials (ERPs) to visual stimuli have a remarkable preference to faces. This study investigated whether visual mental imagery modulates the face-sensitive VPP and/or N170 components.

View Article and Find Full Text PDF

The subjective representation of the sounds delivered to the two ears of a human listener is closely associated with the interaural delay and correlation of these two-ear sounds. When the two-ear sounds, e.g.

View Article and Find Full Text PDF

It is easier to recognize a masked speech when the speech and its masker are perceived as spatially segregated. Using event-related potentials, this study examined how the early cortical representation of speech is affected by different masker types and perceptual locations, when the listener is either passively or actively listening to the target speech syllable. The results showed that the two-talker-speech masker induced a much larger masking effect on the N1/P2 complex than either the steady-state-noise masker or the amplitude-modulated speech-spectrum-noise masker did.

View Article and Find Full Text PDF

This study investigated whether sound intensity affects listeners' sensitivity to a break in interaural correlation (BIC) embedded in wideband noise at different interaural delays. The results show that the detection duration threshold remained stable at the intensity between 60 and 70 dB SPL, but increased in accelerating fashion as the intensity decreased toward 40 dB SPL. Moreover, the threshold elevated linearly as the interaural delay increased from 0 to 4 ms, and the elevation slope became larger as the intensity decreased from 50 to 40 dB SPL.

View Article and Find Full Text PDF