Publications by authors named "Lingtao Mao"

A series of fluorometric sensors of Zn have been synthesized due to the significant function of Zn in the human body and environment. However, most of probes reported for detecting Zn have high detection limit or low sensitivity. In this paper, an original Zn sensor, namely 1o, was synthesized by diarylethene and 2-aminobenzamide.

View Article and Find Full Text PDF

Quantitative visualization and characterization of stress-field evolution during fracture rapid growth is critical for understanding the mechanisms that govern the deformation and failure of solids in various engineering applications. However, the direct capture and accurate characterization of a rapidly-changing stress field during crack propagation remains a challenge. We report an experimental method to quantitatively visualize and characterize rapid evolution of the stress-field during crack propagation in a transparent disc model containing a penetrating fusiform crack.

View Article and Find Full Text PDF

Providing a quantitative description of the whole-field stress evolution in complex structures subjected to continuous loading processes using traditional photoelastic approaches is a significant challenge because of the difficulties with fabricating complex structures, identifying the stress distribution and evolution, and unwrapping isochromatic phase maps. To overcome the challenges, we proposed a novel method to quantify the continuous whole-field stress evolution in a complex porous structure that was fabricated with 3D printing technology. The stress fringes were identified by analysing a series of continuous frames extracted from a video recording of the fringe changes and determining the valleys of the light intensity change curve over the entire loading process.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technology integrating frozen stress techniques has created a novel way to directly represent and characterize 3D interior discontinuities and the full-field stress induced by mining- or construction-related disturbances of deeply buried rock masses. However, concerns have been raised about the similitude between the mechanical behaviours of the printed model and its prototype rock mass. Ensuring the mechanical properties of the printable materials are as close as possible to those of real rock mass is of critical significance.

View Article and Find Full Text PDF