Publications by authors named "Lingrang Kong"

Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group.

View Article and Find Full Text PDF

Trichothecene (TCN) contamination in food and feed is a serious challenge due to the negative health and economic impacts. Here, we confirmed that the glutathione S-transferase (GST) Fhb7-GST could broadly catalyze type A, type B and type D TCNs into glutathione epoxide adducts (TCN-13-GSHs). To evaluate the toxicity of TCN-13-GSH adducts, we performed cell proliferation assays in vitro, which demonstrated decreased cytotoxicity of the adducts.

View Article and Find Full Text PDF

The leaf rust resistance gene Lr19, which is present on the long arm of chromosome 7E1 in Thinopyrum ponticum, was mapped within a 0.3-cM genetic interval, and translocation lines were developed to break its linkage with yellow pigmentation The leaf rust resistance locus Lr19, which was transferred to wheat (Triticum aestivum) from its relative Thinopyrum ponticum in 1966, still confers broad resistance to most known races of the leaf rust pathogen Puccinia triticina (Pt) worldwide. However, this gene has not previously been fine-mapped, and its tight linkage with a gene causing yellow pigmentation has limited its application in bread wheat breeding.

View Article and Find Full Text PDF

Grain size is a key trait associated with bread wheat yield. It is also the most frequently selected trait during domestication. After the phenotypic characterization of 768 bread wheat accessions in three plots for at least two years, the present study shows that the improved variety showed significantly higher grain size but lower grain protein content than the landrace.

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties.

View Article and Find Full Text PDF

Microbiota colonize every accessible plant tissue and play fundamental roles in plant growth and health. Soybean stay-green syndrome (SGS), a condition that causes delayed leaf senescence (stay-green), flat pods and abnormal seeds of soybean, has become the most serious disease of soybean in China. However, the direct cause of SGS is highly debated, and little is known about how SGS affect soybean microbiome dynamics, particularly the seed microbiome.

View Article and Find Full Text PDF

Fusarium head blight, mainly incited by , is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites.

View Article and Find Full Text PDF

Triticum urartu is the progenitor of the A subgenome in tetraploid and hexaploid wheat. Uncovering the landscape of genetic variations in T. urartu will help us understand the evolutionary and polyploid characteristics of wheat.

View Article and Find Full Text PDF

Even frequently used in wheat breeding, we still have an insufficient understanding of the biology of the products distant hybridization. In this study, a transcriptomic analysis was performed for six - substitution lines in comparison with the host plants. All the six disomic substitution lines showed much stronger "transcriptomic-shock" occurred on alien genomes with 57.

View Article and Find Full Text PDF

Background: Bread wheat (Triticum aestivum) is an important staple cereal grain worldwide. The ever-increasing environmental stress makes it very important to mine stress-resistant genes for wheat breeding programs. Therefore, dehydrin (DHN) genes can be considered primary candidates for such programs, since they respond to multiple stressors.

View Article and Find Full Text PDF

Bran is the main by-product of wheat milling and the part of the grain with the highest Zn content. We investigated the effects of the particle sizes (coarse, D50 = 375.4 ± 12.

View Article and Find Full Text PDF

Background: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species.

View Article and Find Full Text PDF

Including legumes in the cereal cropping could improve the crop yield and the uptake of nitrogen (N) and phosphorus (P) of subsequent cereals. The effects of legume-cereal crop rotations on the soil microbial community have been studied in recent years, the impact on soil functional genes especially involved in P cycling is raising great concerns. The metagenomic approach was used to investigate the impacts of crop rotation managements of soybean-wheat (SW) and maize-wheat (MW) lasting 2 and 7years on soil microbial communities and genes involved in P transformation in a field experiment.

View Article and Find Full Text PDF
Article Synopsis
  • High-resolution GWAS was performed on 768 wheat cultivars to identify QTLs related to stress resistance and tolerance traits.
  • Among the 153 QTLs identified, 81 were precisely located to small intervals, and 837 genes linked to stress resistance were detected in these QTL regions.
  • The study demonstrated high prediction accuracies for genomic selection in wheat breeding, paving the way for improved genetic research and breeding efficiency.
View Article and Find Full Text PDF

Glutathione S-transferases (GSTs) are ancient proteins encoded by a large gene family in plants, which play multiple roles in plant growth and development. However, there has been little study on the GST genes of common wheat () and its relatives (, , and ), which are four important species of . Here, a genome-wide comprehensive analysis of this gene family was performed on the genomes of common wheat and its relatives.

View Article and Find Full Text PDF

Background: Rice plants suffer from the rising temperature which is becoming more and more prominent. Mining heat-resistant genes and applying them to rice breeding is a feasible and effective way to solve the problem.

Result: Three main biomass traits, including shoot length, dry weight, and fresh weight, changed after abnormally high-temperature treatment in the rice seedling stage of a recombinant inbred lines and the natural indica germplasm population.

View Article and Find Full Text PDF

A single dominant powdery mildew resistance gene MlNFS10 was identified in wild emmer wheat and mapped within a 0.3cM genetic interval spanning a 2.1Mb physical interval on chromosome arm 4AL.

View Article and Find Full Text PDF

Colored-grain wheats have received increasing attention owing to their high nutritional values. In this study, we compared the metabolomes of four pigmented wheat cultivars with conventional yellow wheat using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics approach. A total of 711 metabolites were identified, and considerable differences were observed in the flavonoid and phenylpropanoid metabolites among five samples by orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA) analysis.

View Article and Find Full Text PDF

Background: The speciation and fast global domestication of bread wheat have made a great impact on three subgenomes of bread wheat. DNA base composition is an essential genome feature, which follows the individual-strand base equality rule and [AT]-increase pattern at the genome, chromosome, and polymorphic site levels among thousands of species. Systematic analyses on base compositions of bread wheat and its wild progenitors could facilitate further understanding of the evolutionary pattern of genome/subgenome-wide base composition of allopolyploid species and its potential causes.

View Article and Find Full Text PDF

Background: Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response.

View Article and Find Full Text PDF

Wheat (Triticum aestivum) is a major staple food crop worldwide. Genetic dissection of important agronomic traits is essential for continuous improvement of wheat yield to meet the demand of the world's growing population. We conducted a large-scale genome-wide association study (GWAS) using a panel of 768 wheat cultivars that were genotyped with 327 609 single-nucleotide polymorphisms generated by genotyping-by-sequencing and detected 395 quantitative trait loci (QTLs) for 12 traits under 7 environments.

View Article and Find Full Text PDF

Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Perch) results in large yield losses in annual global wheat production. Although studies have identified a number of wheat FHB resistance genes, a deeper understanding of the mechanisms underlying host plant resistance to F.

View Article and Find Full Text PDF

Two new Hessian fly resistance QTLs (H35 and H36) and tightly linked SNP markers were identified in a US hard winter wheat SD06165. Hessian fly (HF), Mayetiola destructor (Say), is one of the most destructive pests in wheat (Triticum aestivum L.) worldwide.

View Article and Find Full Text PDF

head blight (FHB), a fungal disease caused by species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene by assembling the genome of , a species used in wheat distant hybridization breeding. encodes a glutathione S-transferase (GST) and confers broad resistance to species by detoxifying trichothecenes through de-epoxidation.

View Article and Find Full Text PDF

The present study aims to develop an agar/maltodextrin-beeswax (A/M-BW) pseudo-bilayer film with high surface hydrophobicity by adjusting drying temperatures and homogenization conditions. Attenuated total reflectance-Fourier transform infrared determined the chemical components of the upper and lower surfaces of the films. X-ray diffraction characterized the crystalline behavior of film matrix.

View Article and Find Full Text PDF