Objective: This study aimed to clarify the difference in Fusobacterium nucleatum (F. nucleatum) induced inflammatory cytokines and nod-like receptor protein 3 (NLRP3) inflammasomes dysregulation among three periodontal cells.
Methods: Oral epithelial cells (HIOECs), THP-1 macrophages, and human gingival fibroblasts (HGFs) were exposed to F.
Neuregulin-1 (NRG-1) can promote the proliferation, migration, and angiogenesis of multiple stem cells, as well as prohibit cell apoptosis. In the present study, we aimed to explore the effects of NRG-1 on the proliferation, migration, apoptosis, angiogenic, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The expression of erythroblastic leukemia viral oncogene homolog 2 (ERBB2), ERBB3, and ERBB4 on PDLSCs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence.
View Article and Find Full Text PDFStromal cell-derived factor-1 (SDF-1) and Exendin-4 (EX-4) play beneficial roles in promoting periodontal ligament stem cells (PDLSCs) osteogenic differentiation, while the detailed mechanism has not been clarified. In this study, we aimed to evaluate the biological mechanism of SDF-1 and EX-4 alone or synergistic application in regulating PDLSCs differentiation by RNA-sequencing (RNA-seq). A total of 110, 116 and 109 differentially expressed genes (DEGs) were generated in osteogenic medium induced PDLSCs treated by SDF-1, EX-4, and SDF-1+EX-4, respectively.
View Article and Find Full Text PDFObjectives: Stromal cell-derived factor-1 (SDF-1) actively directs endogenous cell homing. Exendin-4 (EX-4) promotes stem cell osteogenic differentiation. Studies revealed that EX-4 strengthened SDF-1-mediated stem cell migration.
View Article and Find Full Text PDFPurpose: To investigate the effects of exendin-4(EX-4) on proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells(PDLSCs).
Methods: PDLSCs were isolated and cultured using limited dilution method in vitro. Colony formation assay, osteogenic and adipogenic differentiation were applied to identify the stem cells.
The regeneration of periodontal tissue defects remains a clinical challenge due to its complex tissue structure (e.g. periodontal ligament, alveolar bone and cementum) and poor self-healing ability.
View Article and Find Full Text PDFBackground: Interferon-β (IFN-β) is a cytokine with pleiotropic cellular functions, including antiviral, antiproliferative, and immunomodulatory activities. IFN-β inhibits multiple tumor cell growth in vitro. However, the contradiction between the therapeutic dose of IFN-β and its maximally tolerated dose is still inextricable in vivo.
View Article and Find Full Text PDFBackground And Objectives: Basic fibroblast growth factor (bFGF) promotes cells proliferation and chemotaxis and maintains stemness while inhibits mineralized nodule formation. Bone morphogenetic protein 2 (BMP-2) shows great potential in promoting bone formation. However, sequential application of these two growth factors on periodontal ligament stem cells (PDLSCs) has not been explored.
View Article and Find Full Text PDFThe selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell-based regenerative therapies, while technical challenges have limited cell yield and thus affected the success of these potential treatments. The Rho GTPases and downstream Rho kinases are central regulators of cytoskeletal dynamics during cell cycle and determine the balance between stem cells self-renewal, lineage commitment and apoptosis. Trans-4-[(1R)-aminoethyl]-N-(4-pyridinyl)cylohexanecarboxamidedihydrochloride (Y-27632), Rho-associated kinase (ROCK) inhibitor, involves various cellular functions that include actin cytoskeleton organization, cell adhesion, cell motility and anti-apoptosis.
View Article and Find Full Text PDFAim: To investigate the photocatalytic inactivation of fungi and bacteria mediated by TiO nanorod arrays (TNRs).
Materials & Methods: The features of TNRs were characterized by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, x-ray diffraction (XRD) and contact angle measurement. The antimicrobial efficiency was detected on biofilm and planktonic forms of Candida albicans, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis by crystal violet and XTT (2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-caboxanilide) assay, confocal laser scanning microscope and colony-forming assay.
Background/purpose: Gingiva-derived mesenchymal stem cells (GMSCs) are attractive alternative MSC sources because of their relative abundance of sources and ease of accessibility. However, the isolation method for harboring GMSCs remains under discussion. The aim of the study was to isolate and explore characterization of human GMSCs, and compare stem cell properties with bulk-cultured gingival fibroblasts (GFs).
View Article and Find Full Text PDFObjectives: Stromal cell-derived factor-1α (SDF-1α) plays an important role in tissue regeneration in various tissues including the periodontium. A potential limitation for its use derives from its sensitivity to cleavage by dipeptidyl peptidase-IV (DPP-IV). Parathyroid hormone (PTH) reduces enzymatic activity of DPP-IV and is suggested to be a promising agent for periodontal tissue repair.
View Article and Find Full Text PDFStromal cell-derived factor-1α (SDF-1α) is a key stem cell homing factor that is crucial for recruitment of stem cells to many diseased organs. However, the therapeutic activity of SDF-1α is potentially limited by N-terminal cleavage at position-2 proline by a cell surface protein CD26/dipeptidyl peptidase-IV (DPP-IV). Parathyroid hormone (PTH) is a DPP-IV inhibitor and has been suggested as a promising agent for periodontal tissue repair.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
June 2015
Objective: To investigate the expression of chemokine stromal cell-derived factor-1 (SDF-1) receptor CXCR4 in human gingival mesenchymal stem cells (GMSCs) and the migration potential of GMSCs stimulated with SDF-1.
Methods: Human GMSCs were isolated by single-cell cloning method. Their cell surface markers were characterized by flow cytometry, and the rate of colony formation was evaluated.
Stromal cell-derived factor-1 (SDF-1) recruits adult stem/progenitor cells via its specific receptor, C-X-C motif receptor 4 (CXCR4), to promote heart, kidney and tendon regeneration, but little is known about the effects of SDF-1 on bone regeneration in periodontal diseases. The objective of this study was to investigate whether local administration of SDF-1 in a collagen membrane scaffold enhanced the recruitment of host stem cells and improved periodontal bone defect repair. To this end, bone defects were established on the buccal side of bilateral mandibles in Wistar rats.
View Article and Find Full Text PDFObjective: To investigate the chemotactic response of human periodontal ligament stem cells (PDLSCs) to bone morphogenetic protein-2 (BMP-2).
Methods: Human PDLSCs were obtained from clinically healthy premolars extracted for orthodontic reasons and used to isolate PDLSCs by limited dilution method. The expression of Vimentin and stem cell marker STRO-1 on PDLSCs were demonstrated with immunocytochemical staining.
Background: The pivotal role of chemokine stromal cell-derived factor-1 (SDF-1) in bone marrow mesenchymal stem cells recruitment and tissue regeneration has already been reported. However, its roles in human periodontal ligament stem cells (PDLSCs) remain unknown. PDLSCs are regarded as candidates for periodontal tissue regeneration and are used in stem cell-based periodontal tissue engineering.
View Article and Find Full Text PDF