Publications by authors named "Lingqi Zhang"

Article Synopsis
  • The tilt illusion demonstrates how the surrounding context influences our perception of visual stimuli, highlighting a bias in the orientation of a central image due to its background.
  • Despite over 85 years of research, there is still no comprehensive explanation linking the neural and behavioral aspects of this phenomenon.
  • Recent studies show that the tilt illusion arises from changes in how precisely our brains encode visual information, with enhanced accuracy for stimuli that match the surrounding orientation, suggesting a dynamic adjustment of neural resources based on context.
View Article and Find Full Text PDF

People often change their evaluations upon learning about their peers' evaluations, i.e., social learning.

View Article and Find Full Text PDF

Human sensory systems are more sensitive to common features in the environment than uncommon features. For example, small deviations from the more frequently encountered horizontal orientations can be more easily detected than small deviations from the less frequent diagonal ones. Here we find that artificial neural networks trained to recognize objects also have patterns of sensitivity that match the statistics of features in images.

View Article and Find Full Text PDF

Bayesian inference provides an elegant theoretical framework for understanding the characteristic biases and discrimination thresholds in visual speed perception. However, the framework is difficult to validate because of its flexibility and the fact that suitable constraints on the structure of the sensory uncertainty have been missing. Here, we demonstrate that a Bayesian observer model constrained by efficient coding not only well explains human visual speed perception but also provides an accurate quantitative account of the tuning characteristics of neurons known for representing visual speed.

View Article and Find Full Text PDF

We developed an image-computable observer model of the initial visual encoding that operates on natural image input, based on the framework of Bayesian image reconstruction from the excitations of the retinal cone mosaic. Our model extends previous work on ideal observer analysis and evaluation of performance beyond psychophysical discrimination, takes into account the statistical regularities of the visual environment, and provides a unifying framework for answering a wide range of questions regarding the visual front end. Using the error in the reconstructions as a metric, we analyzed variations of the number of different photoreceptor types on human retina as an optimal design problem.

View Article and Find Full Text PDF

Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure.

View Article and Find Full Text PDF

(1) Background: DNA sequence alignment process is an essential step in genome analysis. BWA-MEM has been a prevalent single-node tool in genome alignment because of its high speed and accuracy. The exponentially generated genome data requiring a multi-node solution to handle large volumes of data currently remains a challenge.

View Article and Find Full Text PDF

The material-weight illusion (MWI) is one example in a class of weight perception illusions that seem to defy principled explanation. In this illusion, when an observer lifts two objects of the same size and mass, but that appear to be made of different materials, the denser-looking (e.g.

View Article and Find Full Text PDF