Publications by authors named "Lingmin Yao"

Developing flexible electrodes for the application in sodium-ion batteries (SIBs) has received great attention and has been still challenging due to their merits of additive-free, lightweight, and high energy density. In this work, a free-standing 3D flexible SIB anode with the composition of SnO@hard carbon@MoS@soft carbon is designed and successfully synthesized. This electrode combines the energy storage advantages and hybrid sodium storage mechanisms of each material, manifested in the enhanced flexibility, specific capacity, conductivity, rate, cycling performances, etc.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) have demonstrated remarkable development potential and commercial prospects. However, in the current state of research, the development of high-energy-density, long-cycle-life, high-rate-performance anode materials for SIBs remains a huge challenge. Free-standing flexible electrodes, owing to their ability to achieve higher energy density without the need for current collectors, binders, and conductive additives, have garnered significant attention across various fields.

View Article and Find Full Text PDF

Polymer dielectrics play an irreplaceable role in electronic power systems because of their high power density and fast charge-discharge capability, but it is limited by their low stability in the temperature range of 25-200 °C. Rather than the introduction of one-dimensional fillers in polymers, we used a kind of multidimensional synergistic design to prepare AlO-TiO-AlO/PI composites with layered structures by introducing multi-dimensional materials in polyimide (PI). In fact, the composite achieves much higher temperature stability than the pure PI film.

View Article and Find Full Text PDF

Aqueous zinc ion batteries (AZIBs) have attracted sustained attention owing to their intrinsic safety and low cost. Unfortunately, the dendrite growth and parasitic side reactions of metallic zinc anodes severely degrade the cycling stability of the batteries and limit the practical application of AZIBs. In this work, calcium gluconate (CG), a chelating agent, as a novel electrolyte additive was introduced to tackle the thorny issue of zinc anodes in a 2 M ZnSO electrolyte by the synergistic effects of gluconate (GA) anions and Ca cations.

View Article and Find Full Text PDF

Hydrogen production with higher efficiency and lower cost is of great significance for the sustainable development of energy. Zinc cadmium sulfide (CZS) is gaining more attention owing to its excellent photocatalytic properties. However, its development is greatly limited due to photogenerated charge recombination.

View Article and Find Full Text PDF

Using natural light energy to convert water into hydrogen is of great significance to solving energy shortages and environmental pollution. Due to the rapid recombination of photogenerated carriers after separation, the efficiency of photocatalytic hydrogen production using photocatalysts is usually very low. Here, efficient CdZnS nanoparticles@TiCT MXene nanosheet heterojunction photocatalysts have been successfully prepared by a facile in situ growth strategy.

View Article and Find Full Text PDF

Dielectric capacitors with ultrahigh power densities and fast charging/discharging rates are of vital relevance in advanced electronic markets. Nevertheless, a tradeoff always exists between breakdown strength and polarization, which are two essential elements determining the energy storage density. Herein, a novel trilayered architecture composite film, which combines outer layers of two-dimensional (2D) BNNS/poly(vinylidene fluoride--hexafluoropropylene) (P(VDF-HFP)) with high breakdown strength and an intermediate layer made of blended 2D MoS nanosheets/P(VDF-HFP) with large polarization, is fabricated using the layer-by-layer casting method.

View Article and Find Full Text PDF

To reach the full potential of polymer dielectrics in advanced electronics and electrified transportation, it calls for efficient operation of high-energy-density dielectric polymers under high voltages over a wide temperature range. Here, the polymer composites consisting of the boron nitride nanosheet/polyetherimide and TiO nanorod arrays/polyetherimide layers are reported. The layered composite exhibits a much higher dielectric constant than the current high-temperature dielectric polymers and composites, while simultaneously retaining low dielectric loss at elevated temperatures and high applied fields.

View Article and Find Full Text PDF

With rapid developments in the consumer electronics market, electrostatic capacitors need to store as much energy as possible within a rather restricted space. In this work, nanocomposite films combining two-dimensional core-shell NaNbO3@Al2O3 platelets (2D NN@AO Ps) and poly(vinylidene-fluoride hexafluoropropylene) (P(VDF-HFP)), featuring excellent energy storage capability, high efficiency, and ultrafast discharge performance, are designed and fabricated. Both the experimental results and finite element simulations confirm the superiority of these 2D NN@AO Ps nanocomposite films in improving the breakdown strength (Eb) and energy storage capability.

View Article and Find Full Text PDF

Lithium-sulfur battery has been considered to be one of the promising alternatives to the traditional lithium-ion battery due to its high theoretical energy density and saving-cost. However, the sluggish reaction during the decomposition of lithium sulfide results in a low specific capacity and poor cycling stability. Herein CoO nano-particle embedded mesoporous carbon rod (CoO@MCR) was prepared through a template method to accommodate sulfur as cathode of lithium-sulfur battery.

View Article and Find Full Text PDF

As a major challenge in C-H borylation, how to control the selectivity has attracted lots of attention, however, the related mechanistic information still needs to be uncovered. Herein, density functional theory (DFT) has been used to study the mechanism for the ligand controlled regioselectivity in the iridium-catalyzed C-H borylation of aromatic imines, which is inspired by experimental observations (R. Bisht, B.

View Article and Find Full Text PDF

Ferroelectric thin films have been utilized in a wide range of electronic and optical applications, in which their morphologies and properties can be inherently tuned by a qualitative control during growth. In this work, we demonstrate the evolution of the PbLa(ZrTi)O₃ (PLZT) thin films on MgO (200) with high uniformity and optimized optical property via the controls of the deposition temperatures and oxygen pressures. The perovskite phase can only be obtained at the deposition temperature above 700 °C and oxygen pressure over 50 Pa due to the improved crystallinity.

View Article and Find Full Text PDF

Organic/inorganic nanocomposites (OINs) can be potentially used as high-performance capacitors due to their rapid charge-discharge capability along with respectable power density. The coupling effect of the filler/matrix interface plays a prominent role in the dielectric and electric properties of OINs. Along with a review of contemporary theoretical models, recent advances in interfacial optimization to improve energy density through careful interface control and design are also presented.

View Article and Find Full Text PDF

One-dimensional (1D) materials as fillers introduced into polymer matrixes have shown great potential in achieving high energy storage capacity because of their large dipole moments. In this article, 1D lead-free 0.5(BaCa)TiO-0.

View Article and Find Full Text PDF

Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates.

View Article and Find Full Text PDF

Flexible electrostatic capacitors are potentially applicable in modern electrical and electric power systems. In this study, flexible nanocomposites containing newly structured one-dimensional (1D) BaTiO@AlO nanofibers (BT@AO NFs) and the ferroelectric polymer poly(vinylidene fluoride) (PVDF) matrix were prepared and systematically studied. The 1D BT@AO NFs, where BaTiO nanoparticles (BT NPs) were embedded and homogeneously dispersed into the AO nanofibers, were successfully synthesized via an improved electrospinning technique.

View Article and Find Full Text PDF

A novel inorganic/polymer nanocomposite, using 1-dimensional TiO nanorod array as fillers (TNA) and poly(vinylidene fluoride) (PVDF) as matrix, has been successfully synthesized for the first time. A carefully designed process sequence includes several steps with the initial epitaxial growth of highly oriented TNA on the fluorine-doped tin oxide (FTO) conductive glass. Subsequently, PVDF is embedded into the nanorods by the spin-coating method followed by annealing and quenching processes.

View Article and Find Full Text PDF