Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation.
View Article and Find Full Text PDFTree species establish mycorrhizal associations with both ectomycorrhizal (EM) and arbuscular mycorrhizal fungi (AM), which play crucial roles in facilitating plant phosphorus (P) acquisition. However, little attention has been given to the effects of EM and AM species on soil P dynamics and the underlying mechanisms in subtropical forests, where P availability is typically low. To address this knowledge gap, we selected two EM species ( - PM and - CC) and two AM species ( - Chinese fir, CF and - MM) in a common garden established in 2012 in subtropical China.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2022
Recycling municipal sewage sludge in fired bricks not only contributes to environmental protection, but is also an alternative to natural clay resource. The complex compositions of sludge have a great influence on the brick property. This work presents a systematical investigation on fired bricks made only with sludge and shale.
View Article and Find Full Text PDFWith the increase in municipal solid waste (MSW), most cities face solid waste management issues. In this study, the analytic hierarchy process (AHP) and artificial neural network (ANN) models were improved to assess the MSW separation capability based on 18 selected indicators of solid waste separation in 15 cities in China. The entropy weight method (EWM) was used in AHP to optimize and determine the indicators and then evaluate their weights, which showed that the general public budget expenditure had the highest weight (0.
View Article and Find Full Text PDFMaterials (Basel)
September 2021
Efflorescence is aesthetically undesirable to all cementitious materials products and mainly results from the carbonation of hydrates and salt precipitation. Alternative binders without portlandite formation theoretically have much lower efflorescence risk, but in practice, the efflorescence of ettringite-rich systems is still serious. This study reports the impacts of mineral additives on the efflorescence of ettringite-rich systems and the corresponding microstructural evolution.
View Article and Find Full Text PDFMaterials (Basel)
September 2021
Precast geopolymers with lower water/binder (0.14), which mainly consists of alkali solution, fly ash (FA) and steel slag (SS), were manufactured through molding pressing technology. The failure mechanisms of precast geopolymers after water immersion were studied by testing the loss of compressive strength, the pH of the leaching solution, the concentration of ions (Na, Ca, Si and Al), the evolution of phases, pore structure and morphology, and further discussion of the regulation evolution was performed.
View Article and Find Full Text PDFThe main concern of this work is to evaluate the influences of supplementary cementitious materials (fly ash, slag) and a new type of polycarboxylate superplasticizer containing viscosity modifying agents (PCE-VMA) on the performance of self-compacting concrete (SCC). The workability, hydration process, mechanical property, chloride permeability, degree of hydration and pore structure of SCC were investigated. Results indicate that the addition of fly ash and slag slows down early hydration and decreases the hydration degree of SCC, and thus leads to a decline in compressive strengths, especially within the first 7 days.
View Article and Find Full Text PDFMineral additions can eliminate the conversion in calcium aluminate hydrates and thus inhibit the future strength retraction of calcium aluminate cement (CAC). However, the impacts of these additions on the protection capacity of CAC concrete in relation to the corrosion of embedded steel reinforcement remains unclear. This paper focused on the corrosion behavior of steel reinforcement in slag, limestone powder, or calcium nitrate-modified CAC mortars via XRD and electrochemical methods (corrosion potential, electrochemical impedance, and linear polarization evaluation).
View Article and Find Full Text PDFThis paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye'elimite were selected.
View Article and Find Full Text PDFPharmacologically active compounds found in reclaimed wastewater irrigation or animal manure fertilizers pose potential risks for agriculture. The mechanism underlying the effects of ketoprofen on rice (Oryza sativa L.) seedlings was investigated.
View Article and Find Full Text PDFIonic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([CMIM]Cl), 1-decyl-3-methylimidazolium chloride ([CMIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([CMIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities.
View Article and Find Full Text PDFIn order to modify the porous interfacial transition zone (ITZ) microstructure of concrete more efficiently, a method of coating aggregate surfaces by using several nanoparticles was evaluated in this study. The compressive strength, chloride penetration of sound, and pre-loading samples were assessed in relation to the type of coating materials used (slag, nano-CaCO, and nano-SiO) and the designed coating thickness (5, 10, and 15 μm). The ITZ microstructure was quantitatively determined via Backscattered electron (BSE) image analysis.
View Article and Find Full Text PDF