Transitions between subsets of differentiating hematopoietic cells are widely regarded as unidirectional . Here, we introduce clonal phylogenetic tracer (CP-tracer) that sequentially introduces genetic barcodes, enabling high-resolution analysis of ~100,000 subclones derived from ~500 individual hematopoietic stem cells (HSC). This revealed previously uncharacterized HSC functional subsets and identified bidirectional fate transitions between myeloid-biased and lineage-balanced HSC.
View Article and Find Full Text PDFDifferentiation arrest and dependence on oxidative metabolism are features shared among genetically diverse acute myeloid leukemias (AML). A phenotypic CRISPR-Cas9 screen in AML identified dependence on phosphoseryl-tRNA kinase (PSTK), an atypical kinase required for the biosynthesis of all selenoproteins. In vivo, PSTK inhibition (PSTKi) impaired AML cell growth and leukemic stem cell self-renewal.
View Article and Find Full Text PDFTo overcome the significant challenges associated with nitrite supply and nitrate residues in mainstream anaerobic ammonium oxidation (anammox)-based processes, this study developed a combined solid-phase denitrification (SPD) and anammox process for low-strength nitrogen removal without the addition of nitrite. The SPD step was performed in a packed-bed reactor containing poly-3-hydroxybutyrate-co-3-hyroxyvelate (PHBV) prior to employing the anammox granular sludge reactor in the continuous-flow mode. The removal efficiency of total inorganic nitrogen reached 95.
View Article and Find Full Text PDFThis work presents a novel consensus molecular subtype (CMS) classifier for colorectal cancer (CRC), optimized for RNA-sequencing data stemming from degraded RNA of clinical formalin-fixed paraffin-embedded (FFPE) tissue samples (the CMSFFPE classifier).
View Article and Find Full Text PDFConsensus Molecular Subtype (CMS) classification of colorectal cancer (CRC) tissues is complicated by RNA degradation upon formalin-fixed paraffin-embedded (FFPE) preservation. Here, we present an FFPE-curated CMS classifier. The CMSFFPE classifier was developed using genes with a high transcript integrity in FFPE-derived RNA.
View Article and Find Full Text PDFAs an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Gastric cancer (GC) is one of the most commonly diagnosed malignancies, threatening millions of lives worldwide each year. Importantly, GC is a heterogeneous disease, posing a significant challenge to the selection of patients for more optimized therapy. Over the last decades, extensive community effort has been spent on dissecting the heterogeneity of GC, leading to the identification of distinct molecular subtypes that are clinically relevant.
View Article and Find Full Text PDFSalt-overly-sensitive 1 (SOS1) is a unique electroneutral Na/H antiporter at the plasma membrane of higher plants and plays a central role in resisting salt stress. SOS1 is kept in a resting state with basal activity and activated upon phosphorylation. Here, we report the structures of SOS1.
View Article and Find Full Text PDFGranular sludges are commonly microbial aggregates used to apply partial nitritation/anammox (PN/A) processes during efficient biological nitrogen removal from ammonium-rich wastewater. Considering keystone taxa of anammox bacteria (AnAOB) in granules and their sensitivity to unfavorable environments, it is essential to investigate microbial responses of autotrophic PN/A granules to real water matrices containing organic and inorganic pollutants. In this study, tap water, surface water, and biotreated wastewater effluents were fed into a series of continuous PN/A granular reactors, respectively, and the differentiation in functional activity, sludge morphology, microbial community structure, and nitrogen metabolic pathways was analyzed by integrating kinetic batch testing, size characterization, and metagenomic sequencing.
View Article and Find Full Text PDFThe low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type Ca3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide.
View Article and Find Full Text PDFOvarian surface epithelium (OSE) undergoes recurring ovulatory rupture and OSE stem cells rapidly generate new cells for the repair. How the stem cell activation is triggered by the rupture and promptly turns on proliferation is unclear. Our previous study has identified that Protein C Receptor (Procr) marks OSE progenitors.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI) molecules are complex glycophospholipids and serve as membrane anchors for tethering many proteins to the cell surface. Attaching GPI to the protein in the endoplasmic reticulum (ER) is catalyzed by the transmembrane GPI transamidase (GPIT) complex, which is essential for maturation of the GPI-anchored proteins. The GPIT complex is known to be composed of five subunits: PIGK, PIGU, PIGT, PIGS and GPAA1.
View Article and Find Full Text PDFGlutamate-gated kainate receptors are ubiquitous in the central nervous system of vertebrates, mediate synaptic transmission at the postsynapse and modulate transmitter release at the presynapse. In the brain, the trafficking, gating kinetics and pharmacology of kainate receptors are tightly regulated by neuropilin and tolloid-like (NETO) proteins. Here we report cryo-electron microscopy structures of homotetrameric GluK2 in complex with NETO2 at inhibited and desensitized states, illustrating variable stoichiometry of GluK2-NETO2 complexes, with one or two NETO2 subunits associating with GluK2.
View Article and Find Full Text PDFIt is now clear that major malignancies are heterogeneous diseases associated with diverse molecular properties and clinical outcomes, posing a great challenge for more individualized therapy. In the last decade, cancer molecular subtyping studies were mostly based on transcriptomic profiles, ignoring heterogeneity at other (epi-)genetic levels of gene regulation. Integrating multiple types of (epi)genomic data generates a more comprehensive landscape of biological processes, providing an opportunity to better dissect cancer heterogeneity.
View Article and Find Full Text PDFSequential chromatin immunoprecipitation (ChIP) is commonly used to investigate DNA-protein and protein-protein interactions to a specific genomic region. However, it can be tricky to achieve a robust and reproducible signal with sequential ChIP. Here, we provide an optimized two-step ChIP protocol to quantify the associates of multiple proteins with the same DNA regulatory element.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the fourth leading cause of cancer death worldwide. However, the pathogenesis of HCC is complicated, and the drugs used for HCC treatment are limited. The following protocol combines a genetically engineered mouse model (GEMM) with a sleeping beauty system to establish an liver tumorigenesis model.
View Article and Find Full Text PDFIntroduction: We have previously demonstrated the antagonistic role of hydrogen sulfide (H2S) in the cognitive dysfunction of streptozotocin (STZ)-induced diabetic rats. It has been confirmed that the impaired hippocampal autophagic flux has a key role in the pathogenesis of cognitive impairment and that ornithine decarboxylase (ODC)/spermidine (Spd) pathway plays an important role in the formation of memory by promoting autophagic flux.
Objectives: To investigate the roles of hippocampal ODC/Spd pathway and autophagic flux in H2S-attenuated cognitive impairment in STZ-induced diabetic rats.
The Hippo signaling pathway maintains organ size and tissue homeostasis via orchestration of cell proliferation and apoptosis. How this pathway triggers cell apoptosis remains largely unexplored. Here, we identify NR4A1 as a target of the Hippo pathway that mediates the pro-apoptotic and anti-tumor effects of the Hippo pathway whereby YAP regulates the transcription, phosphorylation, and mitochondrial localization of NR4A1.
View Article and Find Full Text PDFBcl-2 inhibitors display an effective activity in acute myeloid leukemia (AML), but its clinical efficacy as a monotherapy was limited in part owing to failure to target other antiapoptotic Bcl-2 family proteins, such as Mcl-1. In this context, the combination strategy may be a promising approach to overcome this barrier. Here, we report the preclinical efficacy of a novel strategy combining ABT-199 with triptolide (TPL), a natural product extracted from a traditional Chinese medicine, in AML.
View Article and Find Full Text PDFCalcium homeostasis modulators (CALHMs/CLHMs) comprise a family of pore-forming protein complexes assembling into voltage-gated, Ca -sensitive, nonselective channels. These complexes contain an ion-conduction pore sufficiently wide to permit the passing of ATP molecules serving as neurotransmitters. While their function and structure information is accumulating, the precise mechanisms of these channel complexes remain to be full understood.
View Article and Find Full Text PDFThe Hippo signaling pathway plays critical roles in many biological processes including mechanotransduction. The key activator YAP of this pathway is considered as a central component of mechanotransduction signaling sensing the extracellular mechanical microenvironment changes, such as different cell density, the architecture of tissues and matrix stiffness. Although it has been largely studied that YAP is involved in these processes, the underlying mechanism of mechanical force-induced YAP regulation remains unclear.
View Article and Find Full Text PDFMultiple subtypes of dopamine receptors within the GPCR superfamily regulate neurological processes through various downstream signaling pathways. A crucial question about the dopamine receptor family is what structural features determine the subtype-selectivity of potential drugs. Here, we report the 3.
View Article and Find Full Text PDFBackground And Aims: The conserved Hippo pathway regulates organ size, tissue homeostasis, and tumorigenesis. Interferon regulatory factor 2 binding protein 2 (IRF2BP2) was originally identified as a transcriptional corepressor. However, the association between IRF2BP2 and the Hippo pathway remains largely unknown.
View Article and Find Full Text PDF