Active control of polarization using metasurfaces is crucial in terahertz optics, offering promising advancements in sensing, imaging, and telecommunications. Here, we developed reconfigurable terahertz multifunctional wave plates by leveraging vanadium dioxide/germanium hybrid metasurfaces. This approach allows for mutual role changing of metasurface among quarter-wave plate, half-wave plate, and full-wave plate, facilitated by the introduction of continuous-wave and pulse lasers.
View Article and Find Full Text PDFNear-perfect light harvesting of a metasurface-based absorber paves the way for achieving numerous potential applications in sensing, cloaking, and photovoltaics. Here, we present a reconfigurable perfect absorber based on a molybdenum ditelluride (MoTe) hybrid metasurface at terahertz (THz) frequency. By investigating the optical response of metasurface-based absorbers, a reconfigurable switching of dual-frequency perfect absorption to a new single-frequency absorption takes place when light illuminates MoTe.
View Article and Find Full Text PDF