Background: The E3 ubiquitin ligase murine double minute 2 (MDM2) binds the p53 transcriptional activation domain and acts as a potent inhibitor of pathway, one of the three most crucial oncogenic pathways in urothelial carcinoma (UC). However, the clinical significance and impact on tumor immune contexture of amplification in UC remain unclear.
Methods: This study analyzed 240 patients with UC with matched clinical annotations from two local cohorts (ZSHS cohort and FUSCC cohort).
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry.
View Article and Find Full Text PDFIntramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation.
View Article and Find Full Text PDFBeef and dairy products are rich in protein and amino acids, making them highly nutritious for human consumption. The increasing use of gene editing technology in agriculture has paved the way for genetic improvement in cattle breeding via the development of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system. Gene sequences are artificially altered and employed in the pursuit of improving bovine breeding research through targeted knockout, knock-in, substitution, and mutation methods.
View Article and Find Full Text PDFTechnology for spatial multi-omics aids the discovery of new insights into cellular functions and disease mechanisms. Here we report the development and applicability of multi-omics in situ pairwise sequencing (MiP-seq), a method for the simultaneous detection of DNAs, RNAs, proteins and biomolecules at subcellular resolution. Compared with other in situ sequencing methods, MiP-seq enhances decoding capacity and reduces sequencing and imaging costs while maintaining the efficacy of detection of gene mutations, allele-specific expression and RNA modifications.
View Article and Find Full Text PDFThe purpose of this study was to systematically evaluate the prognosis of patients with hepatocellular carcinoma (HCC) smaller than 5 cm using microwave ablation (MWA) versus radiofrequency ablation (RFA). PubMed, Cochrane Library and Embase databases were searched for studies reporting comparisons of two interventions (MWA versus RFA) for patients with early-stage HCC published up to 31 December, 2022. The analysis evaluated the recurrence-free survival (RFS), overall survival (OS) and complications.
View Article and Find Full Text PDFInt J Biol Macromol
September 2023
Circular RNAs (CircRNAs) are covalently closed-loop non-coding RNA (ncRNA) molecules present in eukaryotes. Numerous studies have demonstrated that circRNAs are important regulators of bovine fat deposition, but their precise mechanisms remain unclear. Previous transcriptome sequencing studies have indicated that circADAMTS16, a circRNA derived from the a disintegrin-like metalloproteinases with the thrombospondin motif 16 () gene, is high expressed in bovine adipose tissue.
View Article and Find Full Text PDFFibroblast growth factor (FGF) family genes are a class of polypeptide factors with similar structures that play an important role in regulating cell proliferation and differentiation, nutritional metabolism, and neural activity. In previous studies, the FGF gene has been widely studied and analyzed in many species. However, the systematic study of the FGF gene in cattle has not been reported.
View Article and Find Full Text PDFClin Res Hepatol Gastroenterol
January 2023
Objective: The purpose of this study was to report the efficacy and safety of no-touch radiofrequency ablation (NT-RFA) in the treatment of small hepatocellular carcinoma (HCC).
Methods: We systematically searched for eligible studies in PubMed, Embase and Cochrane library until June 1, 2022. Random effect model was applied to synthesize the pooled proportions of local tumor progression-free survival (LTP), recurrence-free survival (RFS) and overall survival (OS) respectively, as well as adverse events, for small HCC treated by NT-RFA.
Objectives: To systematically evaluate the clinical efficacy of rectal nonsteroidal anti-inflammatory drugs (NSAIDs) alone or in combination with other agents for preventing pancreatitis after endoscopic retrograde cholangiopanography.
Methods: We carried out a literature search of random controlled trials (RCTs) on preventing post-operative pancreatitis by administration of the anti-inflammatory drugs, indomethacin and diclofenac, following endoscopic retrograde cholangiopancreatography (ERCP). The databases searched for relevant publications up to July 7, 2021, included PubMed, Cochrane Library, and Embase.
J Genet Genomics
November 2022
Spermatogenesis is the process by which diploid male germ cells propagate and differentiate into haploid flagellated spermatozoa. This highly complicated process is dependent on testicular somatic cells maturation. While the role of these somatic cells in spermatogenesis is relatively well established, knowledge about their development and maturation, particularly at the molecular level, is limited.
View Article and Find Full Text PDFSpermatogonial stem cells (SSCs) are able to undergo both self-renewal and differentiation. Unlike self-renewal, which replenishes the SSC and progenitor pool, differentiation is an irreversible process committing cells to meiosis. Although the preparations for meiotic events in differentiating spermatogonia (Di-SG) are likely to be accompanied by alterations in chromatin structure, the three-dimensional chromatin architectural differences between SSCs and Di-SG, and the higher-order chromatin dynamics during spermatogonial differentiation, have not been systematically investigated.
View Article and Find Full Text PDFThe macro- and micro-physical properties of cement-stabilized steel slag (CSS) base materials in a highway project were studied. A discrete element model of CSS with a real steel slag shape was constructed using Particle Flow Code 3D and 3D scanning technology. The sensitivity between the macro- and micro-parameters of the sample was explored, and a nonlinear regression equation was established to analyze the relationship between these parameters.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
December 2021
Background: Spermatogenesis is the process by which male gametes are formed from spermatogonial stem cells and it is essential for the reliable transmission of genetic information between generations. To date, the dynamic transcriptional changes of defined populations of male germ cells in pigs have not been reported.
Results: To characterize the atlas of porcine spermatogenesis, we profiled the transcriptomes of ~ 16,966 testicular cells from a 150-day-old pig testis through single-cell RNA-sequencing (scRNA-seq).
Genomics Proteomics Bioinformatics
August 2023
Spermatogenesis is a continual process that occurs in the testes, in which diploid spermatogonial stem cells (SSCs) differentiate and generate haploid spermatozoa. This highly efficient and intricate process is orchestrated at multiple levels. N-methyladenosine (mA), an epigenetic modification prevalent in mRNAs, is implicated in the transcriptional regulation during spermatogenesis.
View Article and Find Full Text PDFBackground: Spermatogonial stem cells (SSCs), as tissue-specific stem cells, are capable of both self-renewal and differentiation and supporting the continual and robust spermatogenesis for male fertility. As a rare sub-fraction of undifferentiated spermatogonia, SSCs share most molecular markers with the progenitor spermatogonia. Thus, the heterogeneity of the progenitor cells often obscures the characteristics of stem cells.
View Article and Find Full Text PDFIn recent years, cell-free protein synthesis (CFPS) systems have been used to synthesize proteins, prototype genetic elements, manufacture chemicals, and diagnose diseases. These exciting, novel applications lead to a new wave of interest in the development of new CFPS systems that are derived from prokaryotic and eukaryotic organisms. The eukaryotic is emerging as a robust chassis host for recombinant protein production.
View Article and Find Full Text PDFAmphoteric modification can simultaneously improve the adsorption of organic pollutants and heavy metals on clay minerals. Study of the adsorption and interaction of multiple heavy metals on amphoteric modified soils is therefore of practical significance. Here, bentonite-(CK) and 150BS-12-modified bentonites (150BS-12) were characterized both before and after metal ion adsorption using Fourier-transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFDNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP-Seq (ULI-NChIP-Seq), and whole genome bisulfite sequencing (WGBS), we investigated genome-wide DNA methylation patterns and histone 3 Lys-9 trimethylation (H3K9me3) modifications during mouse spermatogenesis.
View Article and Find Full Text PDFA novel biodegradable versatile nanocarrier (FA-CM) was fabricated based on the self-assembly of delaminated CoAl-layered double hydroxides (LDHs) and manganese dioxide (MnO) for optional combination cancer therapy. Biodegradation, versatility, targeting, bioimaging, in vitro cytotoxicity and in vivo antitumor efficacy were evaluated. The results showed that FA-CM could not only be effectively degraded into Co, Al and Mn to overcome the long-term toxic side effects, but also successfully load any positive-charged, negative-charged, hydrophilic, and hydrophobic drug, meeting the critical requirement of versatile nanocarrier.
View Article and Find Full Text PDFSynth Syst Biotechnol
June 2018
Natural products with significant biological activities continuously act as rich sources for drug discovery and development. To harness the potential of these valuable compounds, robust methods need to be developed for their rapid and sustainable production. Cell-free biosynthesis of pharmaceutical natural products by reconstruction of the entire biosynthetic pathways represents one such solution.
View Article and Find Full Text PDFClassical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins E, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing E-E1-E2, E-E2 or E1-E2 but not E-E1, E, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either E or E1 confers the ACR.
View Article and Find Full Text PDF