China is the largest CO emitting country on Earth. During the COVID-19 pandemic, China implemented strict government control measures on both outdoor activity and industrial production. These control measures, therefore, were expected to significantly reduce anthropogenic CO emissions.
View Article and Find Full Text PDFBased on the pollutant data provided by the environmental monitoring stations and the routine observation data of 11 national meteorological stations in Jiangxi Province from 2016 to 2019, the characteristics of ozone pollution and the relationships with meteorological factors were investigated in this study. The results showed that ozone pollution has become increasingly severe in Jiangxi Province in recent years. The annual mean concentration of ozone in Jiangxi Province (the maximum daily 8 h average) was 80.
View Article and Find Full Text PDFAlthough atmospheric peroxyacetyl nitrate (PAN) and O have been extensively measured in Beijing during the summertime, the abundances of PAN, peroxypropionyl nitrate (PPN) and the total odd-reactive nitrogen budget (NO) and their inter-relationship have been studied comparatively less in the winter. Here we measured atmospheric PAN, PPN, O, NO, and NO in Beijing from Nov. 2012 to Jan.
View Article and Find Full Text PDFTo strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of quality assurance and quality control method for background CO2 sampling and analysis. Based on the greenhouse gas sampling and observation experience of CMA, using portable sampling observation and WS-CRDS analysis technique as an example, the quality assurance measures for atmospheric CO,sampling and observation in the Waliguan station (Qinghai), the glass bottle quality assurance measures and the systematic quality control method during sample analysis, the correction method during data processing, as well as the data grading quality markers and data fitting interpolation method were systematically introduced. Finally, using this research method, the CO2 sampling and observation data at the atmospheric background stations in 3 typical regions were processed and the concentration variation characteristics were analyzed, indicating that this research method could well catch the influences of the regional and local environmental factors on the observation results, and reflect the characteristics of natural and human activities in an objective and accurate way.
View Article and Find Full Text PDFJ Environ Sci (China)
December 2014
We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi, in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE) techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10⁻¹² (mol/mol, hereinafter) and 8.
View Article and Find Full Text PDFAn in-situ GC-ECD monitoring system was established at the Shangdianzi GAW regional background station (SDZ) for a 2-year atmospheric methyl chloroform (CH3CCl3) measurement experiment. Robust extraction of baseline signal filter was applied to the CH3CCl3 time series to separate the background and pollution data. The yearly averaged background mixing ratios of atmospheric CH3CCl3 were (9.
View Article and Find Full Text PDFHuan Jing Ke Xue
November 2013
The real-time, automatic, highly accurate and efficient system for measuring the mixing ratios of CO2, CH4, CO and N2O has been developed by combining the commercial FTIR system (Wollongong University) with an auto-sampling system and a working standard module. Based on the tests conducted, the FTIR showed the high precision and a relatively low accuracy associated with its poor determination of correction factors. The absolute error of the mixing ratio of CO was above 38.
View Article and Find Full Text PDFBackground CH4 concentrations were continuously measured at the 4 WMO/GAW stations [Waliguan in Qinghai (WLG), Lin'an in Zhejiang (LAN), Shangdianzi in Beijing (SDZ), and Longfengshan in Heilongjiang (LFS)] by Cavity Ring Down Spectroscopy system. From 2009 to 2010, the diurnal cycle of hourly average CH4 concentration at LAN was found to be similar in all four seasons, with the highest level detected at 05:00 (Beijing Time) and the lowest at about 14:00. Similar CH4 diurnal cycles were observed at LFS in the summer time.
View Article and Find Full Text PDF