Publications by authors named "Linghong Xiong"

Article Synopsis
  • Current water pollution from harmful algae necessitates eco-friendly solutions that utilize natural sunlight for effective treatment.
  • Researchers synthesized new aggregation-induced emission (AIE) photosensitizers that enhance light absorption, allowing them to effectively target and kill algae while generating fluorescence signals.
  • The AIE photosensitizers demonstrated superior effectiveness compared to traditional algaecides, achieving higher kill rates and self-degrading into non-toxic fragments to prevent additional pollution.
View Article and Find Full Text PDF

Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities.

View Article and Find Full Text PDF

Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.

View Article and Find Full Text PDF

The lack of rapid and reliable microbial detection and sensing platforms and insufficient understanding of microbial behavior may delay precautions that could be made, which is a great threat to human life and increases the heavy financial burden on society. In this contribution, a dual-aggregation-induced emission luminogen (AIEgen) system is successfully developed for microbial imaging and metabolic status sensing. This system consists of two AIEgens (DCQA and TPE-2BA) that bear positively charged groups or boronic acid groups, providing universal microbial staining ability and specific affinity for dead microbes, respectively.

View Article and Find Full Text PDF

Sensitive and accurate diagnosis of viral infection is important for human health and social safety. Herein, by means of explosive catalysis from an enzyme muster, a powerful naked-eye readout platform has been successfully constructed for ultrasensitive immunoassay of viral entities. Liposomes were used to encapsulate multiple enzymes into an active unit.

View Article and Find Full Text PDF

Nanomaterials with integrated multiple imaging and therapeutic modalities possess great potentials in accurate cancer diagnostics and enhanced therapeutic efficacy. Traditional strategies for achieving multimodality nanoplatform through one by one combination of different modalities are challenged by the complicated structural design and fabrication as well as inherent incompatibility between different modalities. Herein, a novel strategy is presented to realize multimodal imaging and synergistic therapy using a class of simple silver core/AIE (aggregation-induced emission) shell nanoparticles.

View Article and Find Full Text PDF

Polymers containing rich chalcogen elements are rarely reported due to the lack of facile synthesis methods. Herein, a novel multicomponent polymerization route toward chalcogen-rich polymers was introduced. A series of poly(vinyl sulfones) (PVSs) were synthesized at room temperature using readily prepared monomers.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic bacteria, fungi, and viruses are serious health threats, and while there are established methods for detection, challenges remain with time-consuming techniques like culture counting and PCR.
  • The rise of multidrug-resistant pathogens heightens the urgency for innovative therapeutic solutions.
  • Luminogens with aggregation-induced emission (AIEgens) are emerging as effective tools for sensitive pathogen detection and photodynamic therapy, providing a dual approach for diagnosis and treatment.
View Article and Find Full Text PDF

The rapid and sensitive detection of pathogens is extremely crucial for timely clinical diagnosis and diseases control. Here, by employing cellular beacons with in situ synthesized QDs created from Staphylococcus aureus ( S. aureus), we efficiently fabricated an antibody (Ab) and acetylcholinesterase (AChE)-functionalized nanobioprobe, i.

View Article and Find Full Text PDF

Bloodstains provide admissible information for crime scene investigators. The ability to resolve latent bloodstains that are commonly found in real scenarios is therefore pivotal to public security. Here, we report a facile approach for invisible bloodstain visualization based on the click reaction between serum albumin and tetraphenylethene maleimide (TPE-MI), an aggregation-induced emission luminogen (AIEgen).

View Article and Find Full Text PDF

RNA interference (RNAi) is demonstrated as one of the most powerful technologies for sequence-specific suppression of genes in disease therapeutics. Exploration of novel vehicles for small interfering RNA (siRNA) delivery with high efficiency, low cytotoxicity, and self-monitoring functionality is persistently pursued. Herein, by taking advantage of aggregation-induced emission luminogen (AIEgen), we developed a novel class of Ag@AIE core@shell nanocarriers with regulable and uniform morphology.

View Article and Find Full Text PDF

Sensitive and accurate detection of highly contagious virus is urgently demanded for disease diagnosis and treatment. Herein, based on a multifunctional aggregation-induced emission luminogen (AIEgen), a dual-modality readout immunoassay platform for ultrasensitive detection of viruses has been successfully demonstrated. The platform is relied on virions immuno-bridged enzymatic hydrolysis of AIEgen, accompanying with the in situ formation of highly emissive AIE aggregates and shelling of silver on gold nanoparticles.

View Article and Find Full Text PDF

Background: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus within the family Togaviridae, which has attracted global attention due to its recent re-emergence. In one of our previous studies, we successfully isolated two CHIKV virus strains, SZ1050 and SZ1239, from the serum samples of two imported patients in 2010 and 2012, respectively. However, the differences in their genome characters and cell tropisms remain undefined.

View Article and Find Full Text PDF

Multimodality imaging is highly desirable for accurate diagnosis by achieving high sensitivity, spatial-temporal resolution, and penetration depth with a single structural unit. However, it is still challenging to integrate fluorescent and plasmonic modalities into a single structure, as they are naturally incompatible because of significant fluorescence quenching by plasmonic noble-metal nanoparticles. Herein, we report a new type of silver@AIEgen (aggregation-induced emission luminogen) core-shell nanoparticle (AACSN) with both strong aggregated-state fluorescence of the AIEgen and distinctive plasmonic scattering of silver nanoparticles for multimodality imaging in living cells and small animals.

View Article and Find Full Text PDF

Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation.

View Article and Find Full Text PDF

The whole-genome sequences of seven fatal enterovirus 71 (EV71) strains, isolated in southern China, in 2014, were determined. The complete genome sequences of these strains displayed close relationships to native EV71 strains and showed 94.2% to 99.

View Article and Find Full Text PDF

Ultrabright carbon nanodots-hybridized silica nanospheres (CSNs) are synthesized through the Stöber process of silane functionalized C-dots. The fluorescence of carbon nanodots is converged intensely. A CSN is about 3800 times brighter than a single-carbon nanodot.

View Article and Find Full Text PDF

It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction.

View Article and Find Full Text PDF

Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported.

View Article and Find Full Text PDF

Manipulating biochemical reactions in living cells to synthesize nanomaterials is an attractive strategy to realize their synthesis that cannot take place in nature. Yeast cells have been skillfully utilized to produce desired nanoparticles through spatiotemporal coupling of intracellular nonrelated biochemical reaction pathways for formation of fluorescent CdSe quantum dots. Here, we have successfully transformed Staphylococcus aureus cells into cellular beacons (fluorescing cells), all of which are highly fluorescent and photostable with perfect uniformity.

View Article and Find Full Text PDF

QD biosynthesis affects the mechanical strength of yeast cells. The intracellular synthesis of CdSe QD in yeast cells incubated with Na2 SeO3 and subsequently with CdCl2 increases the glucan content of their cell walls, resulting in their enhanced mechanical strength.

View Article and Find Full Text PDF

Micrococcal nuclease (MNase) is the extracellular nuclease of Staphylococcus aureus (S. aureus). It preferentially digests single-stranded nucleic acids.

View Article and Find Full Text PDF