Publications by authors named "Linghe Xi"

N-methyladenosine is the most prominent RNA modification in mammals. Here, we study mouse skin embryogenesis to tackle m6A's functions and physiological importance. We first landscape the m6A modifications on skin epithelial progenitor mRNAs.

View Article and Find Full Text PDF

Background: To facilitate indefinite proliferation, stem cells and most cancer cells require the activity of telomerase, which counteracts the successive shortening of telomeres caused by incomplete DNA replication at the very end of each chromosome. Human telomerase activity is often determined by the expression level of telomerase reverse transcriptase (TERT), the catalytic subunit of the ribonucleoprotein complex. The low expression level of TERT and the lack of adequate antibodies have made it difficult to study telomerase-related processes in human cells.

View Article and Find Full Text PDF

Reactivation of telomerase, the chromosome end-replicating enzyme, drives human cell immortality and cancer. Point mutations in the telomerase reverse transcriptase (TERT) gene promoter occur at high frequency in multiple cancers, including urothelial cancer (UC), but their effect on telomerase function has been unclear. In a study of 23 human UC cell lines, we show that these promoter mutations correlate with higher levels of TERT messenger RNA (mRNA), TERT protein, telomerase enzymatic activity, and telomere length.

View Article and Find Full Text PDF

Telomerase is the ribonucleoprotein (RNP) enzyme that elongates telomeric DNA to compensate for the attrition occurring during each cycle of DNA replication. Knowing the levels of telomerase in continuously dividing cells is important for understanding how much telomerase is required for cell immortality. In this study, we measured the endogenous levels of the human telomerase RNP and its two key components, human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

In a widely accepted model, the steroid receptor RNA activator protein (SRA protein; SRAP) modulates the transcriptional regulatory activity of SRA RNA by binding a specific stem-loop of SRA. We first confirmed that SRAP is present in the nucleus as well as the cytoplasm of MCF-7 breast cancer cells, where it is expressed at the level of about 10(5) molecules per cell. However, our SRAP-RNA binding experiments, both in vitro with recombinant protein and in cultured cells with plasmid-expressed protein and RNA, did not reveal a specific interaction between SRAP and SRA.

View Article and Find Full Text PDF