Delivering traditional DNA-damaging anticancer drugs into mitochondria to damage mitochondria is a promising chemotherapy strategy. The impermeability of this mitochondrial inner membrane, however, impedes the delivery of drug molecules that could impact other important biological roles of mitochondria. Herein, the prodrug camptothecin (CPT)-triphenylphosphine (TPP) modified with hyaluronic acid (HA) via electrostatic adsorption (HA/CPT-TPP, HCT) was used to mediate the mitochondrial accumulation of CPT.
View Article and Find Full Text PDFMetastasis and resistance are main causes to affect the outcome of the current anticancer therapies. Heat shock protein 90 (Hsp90) as an ATP-dependent molecular chaperone takes important role in the tumor metastasis and resistance. Targeting Hsp90 and downregulating its expression show promising in inhibiting tumor metastasis and resistance.
View Article and Find Full Text PDFThe use of conventional chemotherapy often faces limitations such as severe side effects, weak tumor tissue specificity, and the development of multidrug resistance. To conquer these challenges, numerous novel drug carriers have been designed in recent years. However, due to the complex processes of tumor development, metastasis and recurrence, single chemotherapy cannot fulfill the goals of clinical diverse treatment.
View Article and Find Full Text PDFForsythiae Fructus (FF), the fruit of (Thunb.) Vahl. (Lianqiao), is one of the most fundamental herbs in Traditional Chinese Medicines (TCM), mainly due to its heat-clearing and detoxifying effects.
View Article and Find Full Text PDFDue to the superior safety and therapeutic efficacy, clopidogrel (CLP) has been widely used to prevent postoperative thrombosis. However, limitations of delayed absorption and metabolic activation of clopidogrel after oral administration hinder its clinic use for acute thrombosis treatment in percutaneous coronary intervention (PCI). Although clopidogrel aqueous injection systems were designed and developed, chemical instability under physiological condition or vascular irritation remains to be solved.
View Article and Find Full Text PDFBackground: Mitochondria play a role in the occurrence, development, drug resistance, metastasis, and other functions of cancer and thus are a drug target. An acid-activated mitochondria-targeting drug nanocarrier with redox-responsive function was constructed in the present study. However, whether this vector can precisely delivery paclitaxel (PTX) to enhance therapeutic efficacy in drug-resistant lung cancer is unknown.
View Article and Find Full Text PDFNonhealing wounds in diabetes remain a global clinical and research challenge. Exosomes are primary mediators of cell paracrine action, which are shown to promote tissue repair and regeneration. In this study, we investigated the effects of serum derived exosomes (Serum-Exos) on diabetic wound healing and its possible mechanisms.
View Article and Find Full Text PDFSingle chemotherapy often causes severe adverse effects and drug resistance to limit therapeutic efficacy. As a noninvasive approach, photothermal therapy (PTT) represents an attractive option for cancer therapy due to the benefits of remote control and precise treatment methods. Nanomedicines constructed with combined chemo-photothermal properties may exert synergistic effects and improved antitumor efficacy.
View Article and Find Full Text PDFTo overcome the challenges of systemic toxicity and weak tumor selectivity caused by traditional antitumor drugs, numerous nanocarrier systems have been developed in recent decades, and their therapeutic effect has been improved to varying degrees. However, because of the drug resistance effect and metastasis involved in tumor recurrence, a single chemotherapy can no longer satisfy the diversified treatment needs. Recently, the application of chemotherapy in combination with thermotherapy as a synergistic approach has been proven to be more effective, and it provides a new strategy for cancer therapy.
View Article and Find Full Text PDFThe efflux of anticancer agents mediated by P-glycoprotein (P-gp) is one of the main causes of multidrug resistance (MDR) and eventually leads to chemotherapy failure. To overcome this problem, the delivery of anticancer agents in combination with a P-gp inhibitor using nanocarrier systems is considered an effective strategy. On the basis of the physiological compatibility and excellent drug loading ability of erythrocytes, we hypothesized that nanoerythrocytes could be used for the codelivery of an anticancer agent and a P-gp inhibitor to overcome MDR in breast cancer.
View Article and Find Full Text PDFChemotherapeutic drugs frequently encounter multidrug resistance. ATP from mitochondria helps overexpression of drug efflux pumps to induce multidrug resistance, so mitochondrial delivery as a means of "repurposing'' chemotherapeutic drugs currently used in the clinic appears to be a worthwhile strategy to pursue for the development of new anti-drug-resistant cancer agents. TPP-Pluronic F127-hyaluronic acid (HA) (TPH), with a mitochondria-targeting triphenylphosphine (TPP) head group, was first synthesized through ester bond formation.
View Article and Find Full Text PDFThe purpose of this study was to prepare a novel cryptotanshinone-loaded nanoemulsion (Cry LN) and to evaluate its prevention effect on the postoperative peritoneal adhesions (PPA). The Cry LN was prepared by high-pressure homogenization method, and various methods were used to investigate the physicochemical properties. The results showed that Cry LN has nanoscale particle size with uniform distribution and could slowly release the incorporated drug compared with Cry solution.
View Article and Find Full Text PDFAnticancer drugs cannot be located in the tumor efficiently when intravenously administered because of their weak tissue specificity and often present the problems of low therapeutic activity and severe adverse effects. To conquer these challenges, a targeting nanomedicine system based on human body cells or cell derivates have drawn more attention from scientists in recent decades. In this work, we used doxorubicin (DOX) as a model drug and a nanoerythrocyte modified with folic acid (FA) and polyethylene glycol (PEG) as a carrier to develop a novel tumor targeting drug delivery system (FA/PEG-DOX-Nano-RBCs) to enhance antitumor efficacy and reduce drug-related toxicity.
View Article and Find Full Text PDFWater-insoluble drugs cannot be absorbed effectively through the gastrointestinal tract due to insufficient solubility and often face the problems of low bioavailability and poor therapeutic efficacy. To overcome these biopharmaceutical challenges, lipid-based formulations were suggested and have been researched in recent years. In this study, we used atorvastatin as a model drug to prepare a phospholipid complex prodrug system to upgrade its lipophilicity and further developed a drug loaded submicron emulsion to improve its in vivo bioavailability.
View Article and Find Full Text PDFNano erythrocyte ghosts have recently been used as drug carriers of water-soluble APIs due to inherit biological characteristics of good compatibility, low toxicity, and small side-effect. In this study, we developed a novel drug delivery system based on nano erythrocyte ghosts (STS-Nano-RBCs) to transport Sodium Tanshinone IIA sulfonate (STS) for intravenous use in rat. STS-Nano-RBCs were prepared by hypotonic lysis and by extrusion methods, and its biological properties were investigated compared with STS injection.
View Article and Find Full Text PDFPolyamidoamine (PAMAM) dendrimers as synthetic gene vectors are efficient gene delivery systems. In this study, a kind of α-cyclodextrin-PAMAM conjugates polymer (Cy D-G1) was synthesized as a gene delivery vector. Based on ~1H NMR detectation, about 6.
View Article and Find Full Text PDFPolyamidoamine (PAMAM) dendrimers are a class of unique nanomaterials which attracted attention because of their extraordinary properties, such as highly branched structure and types of terminal primary groups. In addition, development in PAMAM chemical modification has broadened its biological application especially for drug and gene delivery. In this study, PAMAMs are covalently conjugated onto α-Cyclodextrin (α-CD) via amide bonds obtaining the starburst cationic polymers (CD-PG2).
View Article and Find Full Text PDFNumerous preclinical studies have demonstrated that polycation mediated gene delivery systems successfully achieved efficient gene transfer into cells and animal models. However, results of their clinical trials to date have been disappointing. That self-assembled gene and polycation systems should be stable undergoing dilution in the body is one of the prerequisites to ensuring efficiency of gene transfer in clinical trials, but it was neglected in most preclinical studies.
View Article and Find Full Text PDFCationic polymers have been regarded as promising non-viral gene carriers because of their advantages over viral gene vectors, such as low cost, a high level of safety and easy manipulation. However, their poor transfection efficiency in the presence of serum and high toxicity are still limiting issues for clinical applications. In addition, the lack of adequate understanding of the gene delivery mechanism hinders their development to some extent.
View Article and Find Full Text PDFYao Xue Xue Bao
December 2010
This paper is to study the inhibitory effect of water soluble polymers--methyl cellulose (MC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose (HPC-M), poloxamer (F68) and polyvidon (PVP) on osthole (OST) crystallization and investigate the impact of polymer concentration and viscosity on crystallization behavior. Also, UV spectrophotometry method was used to determine the drug concentration at different time point to draw the OST concentration-time curve. Results show that HPMC has the most significant inhibition effect on OST crystallization, and drug concentration level is 1.
View Article and Find Full Text PDFArch Pharm Res
October 2007
Lipid microspheres (LMs) have recently been use as drug carriers for intravenous use due to its low toxicity, good physiological tolerance and the reduction of the drug related side-effect. In this study, clarithromycin was incorporated in LMs, in an attempt to reduce the pain caused by intravenous use. The composition of the drug loaded LMs was clarithromycin 0.
View Article and Find Full Text PDFAim: To prepare clarithromycin emulsion and investigate its pharmacokinetics in rats. And to do irritation test of the emulsion.
Methods: High pressure homogenization method was used to prepare clarithromycin emulsion, and the Nicomp380 machine was used to test the mean particle size and zeta-potential of clarithromycin emulsion.