The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank.
View Article and Find Full Text PDFOwning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.
View Article and Find Full Text PDFCover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs).
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
Brown planthoppers (Nilaparvata lugens) and white-backed planthoppers (Sogatella furcifera) are among the most destructive pests on rice. However, plant susceptibility genes have not yet been exploited for crop protection. Here we identified a leucine-rich repeat protein, OsLRR2, from susceptible rice varieties that facilitates infestation by brown planthopper N.
View Article and Find Full Text PDFCyclic di-GMP (c-di-GMP), a ubiquitous secondary messenger in bacteria, affects multiple bacterial behaviors including motility and biofilm formation. c-di-GMP is synthesized by diguanylate cyclase harboring a GGDEF domain and degraded by phosphodiesterase harboring an either EAL or HD-GYP domain. Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors more than 60 genes involved in c-di-GMP metabolism.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2024
In situ wavefront sensing plays a critical role in the delivery of high-quality beams for X-ray experiments. X-ray speckle-based techniques stand out among other in situ techniques for their easy experimental setup and various data acquisition modes. Although X-ray speckle-based techniques have been under development for more than a decade, there are still no user-friendly software packages for new researchers to begin with.
View Article and Find Full Text PDFVancomycin-resistant () infection is associated with higher mortality rates. Previous studies have emphasized the importance of innate immune cells and signalling pathways in clearing , but a comprehensive analysis of host-pathogen interactions is lacking. Here, we investigated the interplay of host and in a murine model of septic peritonitis.
View Article and Find Full Text PDFAnimal models of fatal pneumonia caused by () have not been reliably generated using many strains of less virulent serotypes. Pulmonary infection of a less virulent serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.
View Article and Find Full Text PDFHeavy-metal contamination in soil has long been a persistent challenge and the utilization of agricultural waste for in-situ stabilization remediation presents a promising approach to tackle this problem. Agricultural wastes exhibit promising potential in the remediation of contaminated land and modification could improve the adsorption performance markedly. Citric acid and FeO treated sugarcane bagasse adsorbed more heavy metals than raw materials in the aqueous system, employing these materials for heavy metal remediation in soil holds significant implications for broadening the raw material source of passivators and enhancing waste utilization efficiency.
View Article and Find Full Text PDFComplex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized.
View Article and Find Full Text PDFTransition-metal-catalyzed [4+4] cycloaddition leading to cyclooctanoids has centered on dimerization between 1,3-diene-type substrates. Herein, we describe a [4σ+4π-1] and [4σ+4π] cycloaddition strategy to access 7/8-membered fused carbocycles through rhodium-catalyzed coupling between the 4σ-donor (benzocyclobutenones) and pendant diene (4π) motifs. The two pathways can be controlled by adjusting the solvated CO concentration.
View Article and Find Full Text PDFJ Synchrotron Radiat
May 2024
At-wavelength metrology of X-ray optics plays a crucial role in evaluating the performance of optics under actual beamline operating conditions, enabling in situ diagnostics and optimization. Techniques utilizing a wavefront random modulator have gained increasing attention in recent years. However, accurately mapping the measured wavefront slope to a curved X-ray mirror surface when the modulator is downstream of the mirror has posed a challenge.
View Article and Find Full Text PDFViruses are crucial in shaping soil microbial functions and ecosystems. However, studies on soil viromes have been limited in both spatial scale and biome coverage. Here we present a comprehensive synthesis of soil virome biogeographic patterns using the Global Soil Virome dataset (GSV) wherein we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial genomes of DNA viruses, 96.
View Article and Find Full Text PDFChoosing a suitable bioaerosol sampler for atmospheric microbial monitoring has been a challenge to researchers interested in environmental microbiology, especially during a pandemic. However, a comprehensive and integrated evaluation method to fully assess bioaerosol sampler performance is still lacking. Herein, we constructed a customized wind tunnel operated at 2-20 km/h wind speed to systematically and efficiently evaluate the performance of six frequently used samplers, where various aerosols, including Arizona test dust, bacterial spores, gram-positive and gram-negative bacteria, phages, and viruses, were generated.
View Article and Find Full Text PDFThe COVID-19 pandemic has fostered major advances in vaccination technologies; however, there are urgent needs for vaccines that induce mucosal immune responses and for single-dose, non-invasive administration. Here we develop an inhalable, single-dose, dry powder aerosol SARS-CoV-2 vaccine that induces potent systemic and mucosal immune responses. The vaccine encapsulates assembled nanoparticles comprising proteinaceous cholera toxin B subunits displaying the SARS-CoV-2 RBD antigen within microcapsules of optimal aerodynamic size, and this unique nano-micro coupled structure supports efficient alveoli delivery, sustained antigen release and antigen-presenting cell uptake, which are favourable features for the induction of immune responses.
View Article and Find Full Text PDFAxially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG (rac)=26.6-28.
View Article and Find Full Text PDFDiffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues of the lung, but little is known about the distinct roles of tissue structural cells in modulating the recruitment of neutrophils to damaged areas. Here, by combining single-cell and spatial transcriptomics, and using quantitative assays, we systematically analyze inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal sender and neutrophils as the signal receiver triggers further neutrophil recruitment.
View Article and Find Full Text PDFVibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing.
View Article and Find Full Text PDFBacterial pneumonia is the leading cause of death worldwide among all infectious diseases. However, currently available vaccines against fatal bacterial lung infections, e.g.
View Article and Find Full Text PDFCarbon is a primary element to constitute organic molecules, while metal catalysis is a basic tool in organic synthesis. The establishment of a link between the ubiquitous carbon bonding and metal catalysis is thus a fundamentally important problem. However, there is yet no experimental example to introduce the role of carbon bonding in a metal catalysis process.
View Article and Find Full Text PDFBackground: Plants sustain intimate relationships with diverse microbes. It is well-recognized that these plant-associated microbiota shape individual performance and fitness of host plants, but much remains to be explored regarding how they exert their function and maintain their homeostasis.
Results: Here, using pink lady (Heterotis rotundifolia) as a study plant, we investigated the phenomenon of microbiota-mediated nitrogen fixation and elucidated how this process is steadily maintained in the root mucilage microhabitat.
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory.
View Article and Find Full Text PDF