There is a short window during which the neonatal heart has the proliferative capacity to completely repair damage, an ability that is lost in adulthood. Inducing proliferation in adult cardiomyocytes by reactivating cell cycle reentry after myocardial infarction (MI) improves cardiac function. De novo purine synthesis is a critical source of nucleotides for cell proliferation.
View Article and Find Full Text PDFBackground: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear.
Methods: We assessed DDX5 expression in human failing hearts and a mouse HF model.
Purpose: A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process.
Methods: Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart.
Background: Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear.
View Article and Find Full Text PDFBackground Myocardial infarction (MI) is characterized by the emergence of dead or dying cardiomyocytes and excessive immune cell infiltration after coronary vessel occlusion. However, the complex transcriptional profile, pathways, cellular interactome, and transcriptional regulators of immune subpopulations after MI remain elusive. Methods and Results Here, male C57BL/6 mice were subjected to MI surgery and monitored for 1 day and 7 days, or sham surgery for 7 days, then cardiac CD45-positive immune cells were collected for single-cell RNA sequencing to determine immune heterogeneity.
View Article and Find Full Text PDFBackground And Aims: Intestinal flora metabolites are associated with cardiovascular (CV) diseases including heart failure (HF). The carnitine precursor trimethyllysine (TML), which participates in the generation of the atherogenic-related metabolite trimethylamine N-oxide (TMAO), was found to be related to poor prognosis in patients with CV diseases. The aim of the present study was to examine the relationship between TML and stable chronic HF.
View Article and Find Full Text PDFArtificial intelligence is increasingly being used on the clinical electrocardiogram workflows. Few electrocardiograms based on artificial intelligence algorithms have focused on detecting myocardial ischemia using long-term electrocardiogram data. A main reason for this is that interference signals generated from daily activities while wearing the Holter monitor lowered the ability of artificial intelligence to detect myocardial ischemia.
View Article and Find Full Text PDFAims: To explore the associations between serum phenylacetylglutamine (PAGln) and chronic heart failure (HF).
Methods And Results: Totally 956 subjects were enrolled consecutively from the Department of Cardiovascular Medicine, Ruijin Hospital. Baseline data were obtained from all participants, and 471 stable chronic HF subjects were followed up.
Background: Heart failure is a global public health issue that is associated with increasing morbidity and mortality. Previous studies have suggested that mitochondrial dysfunction plays critical roles in the progression of heart failure; however, the underlying mechanisms remain unclear. Because kinases have been reported to modulate mitochondrial function, we investigated the effects of DYRK1B (dual-specificity tyrosine-regulated kinase 1B) on mitochondrial bioenergetics, cardiac hypertrophy, and heart failure.
View Article and Find Full Text PDFAcute coronary syndrome (ACS) has become one of the most common causes of disability. It is thus important to identify ACS early in the disease course of patients using novel biomarkers for prompt management. Decorin (DCN) was well-acknowledged for its effect on collagen fibrillogenesis and maintaining tissue integrity.
View Article and Find Full Text PDFCardiac hypertrophy was accompanied by various cardiovascular diseases (CVDs), and due to the high global incidence and mortality of CVDs, it has become increasingly critical to characterize the pathogenesis of cardiac hypertrophy. We aimed to determine the metabolic roles of fatty acid binding protein 3 (FABP3) on transverse aortic constriction (TAC)-induced cardiac hypertrophy. Transverse aortic constriction or Ang II treatment markedly upregulated Fabp3 expression.
View Article and Find Full Text PDFAdvances in single-cell RNA sequencing (scRNA-seq) technology have recently shed light on the molecular mechanisms of the spatial and temporal changes of thousands of cells simultaneously under homeostatic and ischemic conditions. The aim of this study is to investigate whether it is possible to integrate multiple similar scRNA-seq datasets for a more comprehensive understanding of diseases. In this study, we integrated three representative scRNA-seq datasets of 27,349 non-cardiomyocytes isolated at 3 and 7 days after myocardial infarction or sham surgery.
View Article and Find Full Text PDFAims: In patients with coronavirus disease 2019 (COVID-19), the involvement of the cardiovascular system significantly relates to poor prognosis. However, the risk factors for acute myocardial injury have not been sufficiently studied. Thus, we aimed to determine the characteristics of myocardial injury and define the association between routine blood markers and cardiac troponin I, in order to perform a predictive model.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2019
Fatty acid-binding protein 3 (FABP3), a low-molecular-weight protein, participates in lipid transportation, storage, signaling transduction, oxidation, and transcription regulation. Here, we investigated the expression and function of FABP3 in ischemic heart diseases and explored the mechanisms by which FABP3 affected remodeling after myocardial infarction (MI). We showed that ischemic or hypoxic conditions upregulated FABP3 expression in vivo and in vitro.
View Article and Find Full Text PDFAcute kidney injury (AKI) incidence among hospitalized patients is increasing steadily. Despite progress in prevention strategies and support measures, AKI remains correlated with high mortality, particularly among ICU patients, and no effective AKI therapy exists. Here, we investigated the function in kidney ischaemia-reperfusion injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame on chromosome 1.
View Article and Find Full Text PDFObjective Recent studies have demonstrated that right ventricular apical (RVA) pacing has a deleterious impact on left ventricular function, while right ventricular septum (RVS) or His-bundle pacing (HBP) contribute to improvements in cardiac function. A meta-analysis of randomized controlled trials (RCTs) was conducted to compare the mid- and long-term effects of RVS and HB pacing versus RVA pacing on cardiac function. Methods Eligible RCTs were identified by systematically searching the electronic literature databases PubMed®, Cochrane Library, Embase® and Ovid®.
View Article and Find Full Text PDF