Objective: Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men which is associated with profound metabolic changes. Systematic analysis of the metabolic alterations and identification of new biomarkers may benefit PCa diagnosis and a deep understanding of the pathological mechanism. The purpose of this study was to determine the metabolic features of PCa.
View Article and Find Full Text PDFBackground: The role of HOX transcript antisense RNA (HOTAIR) has been proven to be important in tumorigenesis. However, how this molecule promotes metastasis and invasion in PCa is still unclear.
Methods: The relationship between HOTAIR and hepatocellular adhesion molecule (hepaCAM) in PCa was identified by immunohistochemistry, immunofluorescence, plasmid transfection, quantitative real-time PCR and immunoblotting.
Phospholipase C-ε (PLCε) is frequently overexpressed in tumors and plays an important role in the regulation of tumorigenesis. Although great progress has been made in understanding biological roles of PLCε, the relevant molecular mechanisms underlying its pro-tumor activity remain largely unclear. Here, we demonstrated that PLCε knockdown reduced cell metastasis, glucose consumption and lactate production in a manner that depended on hypoxia inducible factor 1α (HIF-1α) expression in prostate cancer cells.
View Article and Find Full Text PDFBackground: Metabolic rewiring is a common feature of many cancer types, including prostate cancer (PCa). Alterations in master genes lead to mitochondrial metabolic rewiring and provide an appealing target to inhibit cancer progression and improve survival. Phospholipase C (PLC)ε is a regulator of tumor generation and progression.
View Article and Find Full Text PDFBACKGROUND Primary therapy for patients with advanced prostate cancer (PCa) consists of androgen deprivation therapy targeting the androgen receptor (AR) axis. However, most tumors progress to castration-resistant prostate cancer (CRPC) within 18-24 months. The purpose of the present study was to investigate the mechanisms through which PCa acquires drug resistance after long-term treatment with AR antagonists.
View Article and Find Full Text PDFThe failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC.
View Article and Find Full Text PDFMost prostate cancers (Pcas) develop into castration-resistant prostate cancer (CRPC) after receiving androgen deprivation therapy (ADT). The expression levels of PLCε and wnt3a are increased in Pca and regulate androgen receptor (AR) activity. However, the biological function and mechanisms of PLCε and wnt3a in CRPC remain unknown.
View Article and Find Full Text PDFObjective: To investigate how hepatocyte cell adhesion molecule (hepaCAM) regulates cancer energy metabolism through hypoxia-inducible factor (HIF-1α) in renal cell carcinoma (RCC).
Materials And Methods: The expression of hepaCAM and HIF-1α in RCC tissue samples was examined by immunohistochemistry. Glucose consumption and lactate production assays were used to detect metabolic activity in RCC cell lines.