Cancer stem cells (CSCs) drive tumor initiation, progression, metastasis, and drug resistance. We report here that programmed cell death ligand 1 (PD-L1) is constitutively expressed in cancer cells to maintain and expand CSC through a novel mechanism in addition to promoting cancer cell immune evasion. We discovered that PD-L1 interacts with receptor Frizzled 6 to activate β-catenin signaling and increase β-catenin-targeted gene expression, such as a putative stem cell marker leucine-rich-repeat-containing G-protein-coupled receptor 5.
View Article and Find Full Text PDFThe nuclear hormone receptor peroxisome proliferator-activated receptor delta (PPARδ) is a ligand-dependent transcription factor involved in fatty acid metabolism, obesity, wound healing, inflammation, and cancer. Although PPARδ has been shown to promote intestinal adenoma formation and growth, the molecular mechanisms underlying the contribution of PPARδ to colorectal cancer remain unclear. Here, we demonstrate that activation of PPARδ induces expansion of colonic cancer stem cells (CSC) and promotes colorectal cancer liver metastasis by binding to the Nanog promoter and enhancing Nanog expression.
View Article and Find Full Text PDFBackground & Aims: Inflammation may contribute to the formation, maintenance, and expansion of cancer stem cells (CSCs), which have the capacity for self-renewal, differentiation, and resistance to cytotoxic agents. We investigated the effects of the inflammatory mediator prostaglandin E2 (PGE2) on colorectal CSC development and metastasis in mice and the correlation between levels of PGE2 and CSC markers in human colorectal cancer (CRC) specimens.
Methods: Colorectal carcinoma specimens and matched normal tissues were collected from patients at the Mayo Clinic (Scottsdale, AZ) and analyzed by mass spectrometry and quantitative polymerase chain reaction.
Amino acid (AA) limitation in mammalian cells triggers a collection of signaling cascades jointly referred to as the AA response (AAR). In human HepG2 hepatocellular carcinoma, the early growth response 1 (EGR1) gene was induced by either AA deprivation or endoplasmic reticulum stress. AAR-dependent EGR1 activation was discovered to be independent of the well characterized GCN2-ATF4 pathway and instead dependent on MEK-ERK signaling, one of the MAPK pathways.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2014
Although epidemiologic and experimental evidence strongly implicates chronic inflammation and dietary fats as risk factors for cancer, the mechanisms underlying their contribution to carcinogenesis are poorly understood. Here we present genetic evidence demonstrating that deletion of peroxisome proliferator-activated receptor δ (PPARδ) attenuates colonic inflammation and colitis-associated adenoma formation/growth. Importantly, PPARδ is required for dextran sodium sulfate induction of proinflammatory mediators, including chemokines, cytokines, COX-2, and prostaglandin E2 (PGE2), in vivo.
View Article and Find Full Text PDFMammalian cells respond to amino acid deprivation through multiple signaling pathways referred to as the amino acid response (AAR). Transcription factors mediate the AAR after their activation by several mechanisms; examples include translational control (activating transcription factor 4, ATF4), phosphorylation (p-cJUN), and transcriptional control (ATF3). ATF4 induces ATF3 transcription through a promoter-localized C/EBP-ATF response element (CARE).
View Article and Find Full Text PDFFollowing amino acid deprivation, the amino acid response (AAR) induces transcription from specific genes through a collection of signaling mechanisms, including the GCN2-eIF2-ATF4 pathway. The present report documents that the histone demethylase JMJD3 is an activating transcription factor 4 (ATF4)-dependent target gene. The JMJD3 gene contains two AAR-induced promoter activities and chromatin immunoprecipitation (ChIP) analysis showed that the AAR leads to enhanced ATF4 recruitment to the C/EBP-ATF response element (CARE) upstream of Promoter-1.
View Article and Find Full Text PDFMammals exhibit multiple adaptive mechanisms that sense and respond to fluctuations in dietary nutrients. Consumption of reduced total dietary protein or a protein diet that is deficient in 1 or more of the essential amino acids triggers wide-ranging changes in feeding behavior and gene expression. At the level of individual cells, dietary protein deficiency is manifested as amino acid (AA) deprivation, which activates the AA response (AAR).
View Article and Find Full Text PDFMammalian cells respond to protein or amino acid (AA) limitation by activating a number of signaling pathways, collectively referred to as the AA response (AAR), that modulate a range of cellular functions, including transcriptional induction of target genes. This study demonstrates that in hepatocellular carcinoma cells, expression of c-JUN, JUN-B, c-FOS, and FOS-B was induced by the AAR, whereas JUN-D, FRA-1, and FRA-2 were not. Of the four activated FOS/JUN members, c-JUN made the largest contribution to the induction of several known AAR target genes.
View Article and Find Full Text PDFAberrant nuclear factor κB (NF-κB) signaling has been found to be of particular importance in diffuse, large B-cell lymphoma (DLBCL) cell survival and proliferation. Although the canonical NF-κB signaling pathway has been studied in some detail, activation of the alternative NF-κB pathway in DLBCL is not well characterized. Important insights into the regulation of the alternative NF-κB pathway in B lymphocytes has recently revealed the regulatory importance of the survival kinase NIK (NF-κB-inducing kinase) in genetically engineered murine models.
View Article and Find Full Text PDFBLyS and its major receptor BAFF-R have been shown to be critical for development and homeostasis of normal B lymphocytes, and for cell growth and survival of neoplastic B lymphocytes, but the biologic mechanisms of this ligand/receptor-derived intracellular signaling pathway(s) have not been completely defined. We have discovered that the BAFF-R protein was present in the cell nucleus, in addition to its integral presence in the plasma membrane and cytoplasm, in both normal and neoplastic B cells. BAFF-R interacted with histone H3 and IKKbeta in the cell nucleus, enhancing histone H3 phosphorylation through IKKbeta.
View Article and Find Full Text PDFTumor necrosis factor receptor-associated factor 6 (TRAF6) is an adaptor/scaffold protein that mediates several important signaling pathways, including the tumor necrosis factor-R:NF-kappaB pathway, involved in immune surveillance, inflammation, etc. Because most studies of TRAF6 function have focused primarily on its role as an adaptor molecule in signaling pathways in the cytoplasm, the potential functions of TRAF6 in other cellular compartments has not been previously investigated. Here, we demonstrate that TRAF6 resides not only in the cellular cytoplasm but is also found in the nuclei of both normal and malignant B lymphocytes.
View Article and Find Full Text PDFCD40 is an integral plasma membrane-associated member of the TNF receptor family that has recently been shown to also reside in the nucleus of both normal B cells and large B-cell lymphoma (LBCL) cells. However, the physiological function of CD40 in the B-cell nucleus has not been examined. In this study, we demonstrate that nuclear CD40 interacts with the NF-kappaB protein c-Rel, but not p65, in LBCL cells.
View Article and Find Full Text PDFCD40 is a tumor necrosis factor (TNF) receptor superfamily, (TNFR; TNFRSF-5) member, that initiates important signaling pathways mediating cell growth, survival, and differentiation in B-lymphocytes. Although CD40 has been extensively studied as a plasma membrane-associated growth factor receptor, we demonstrate here that CD40 is present not only in the plasma membrane and cytoplasm but also in the nucleus of normal and neoplastic B-lymphoid cells. Confocal microscopy showed that transfected CD40-green fluorescent fusion protein entered B-cell nuclei.
View Article and Find Full Text PDFB-lymphocyte stimulator (BLyS), a relatively recently recognized member of the tumor necrosis factor ligand family (TNF), is a potent cell-survival factor expressed in many hematopoietic cells. BLyS binds to 3 TNF-R receptors, TACI, BCMA, BAFF-R, to regulate B-cell survival, differentiation, and proliferation. The mechanisms involved in BLYS gene expression and regulation are still incompletely understood.
View Article and Find Full Text PDF