Publications by authors named "Lingchao Xiang"

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has become a revolutionary technique in the biomedical field, providing unparalleled sensitivity for the detection and characterization of biological samples. In this review, recent SERS innovations are comprehensively discussed, including advanced substrate materials, different SERS detection strategies, and multimodal approaches that combine SERS with other biotechnologies. Among them, the role of SERS in the accurate diagnosis of tumors is highlighted, which has promoted accurate molecular analysis and real-time monitoring of treatment effects.

View Article and Find Full Text PDF

Bacterial keratitis, an ocular emergency, is the predominant cause of infectious keratitis. However, diagnostic procedures for it are invasive, time-consuming, and expeditious, thereby limiting effective treatment for the disease in the clinic. It is imperative to develop a timely and convenient method for the noninvasive diagnosis of bacterial keratitis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a specific Y1 receptor ligand works together with a P-glycoprotein inhibitor to enhance the treatment effectiveness for multidrug-resistant breast cancer.
  • The combination targets mechanisms that cancer cells use to survive against multiple drugs, potentially improving patient outcomes.
  • The research findings suggest that this synergistic approach could be a promising strategy for overcoming drug resistance in cancer treatment.
View Article and Find Full Text PDF

Multidrug resistance (MDR) is one of the main reasons for the inefficiency of cancer chemotherapy. As a consequence of MDR, the expression level of membrane proteins might be changed, which can thus be used to develop a novel strategy for its treatment. Based on the high overexpression of Y receptor (YR) protein and P-glycoprotein (P-gp) in the multidrug resistant breast cancer cell line, a selective YR ligand [Asn, Pro]-NPY (AP) was employed to stabilize the chemotherapeutic drug doxorubicin (DOX) and P-gp inhibitor tariquidar (Tar) co-loaded nanomicelles at the physiological level.

View Article and Find Full Text PDF

Zeolitic imidazole frameworks (ZIFs) are becoming a notable nanosystem in biomedicine field, due to their unique properties of favorable biocompatibility, pH-responsive degradable structure and high drug loading. Compared with the increasing attention on ZIF-8 in cancer diagnosis and treatment, there is limited research about the bio-application of ZIF-90, especially its in vivo therapeutic efficacy and related toxicity. Here, we synthesize nano ZIF-90 through a fast self-assembling process, and the synthesized nano ZIF-90 is about 75 nm with a negative zeta potential, providing better mitochondria targetability, cell biocompatibility and in vivo survival rate comparing to nano ZIF-8.

View Article and Find Full Text PDF

Previous study showed that pyroglutamate aminopeptidase 1 (PGP-1) has a relationship with the immune response in cells. However, whether PGP-1 is involved in inflammatory response in vivo and can serve as a new inflammatory cytokine are still unclear. To address these issues, a new near-infrared fluorescent probe, which exhibits high selectivity and super sensitivity, is developed.

View Article and Find Full Text PDF

Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR.

View Article and Find Full Text PDF

A new hemicyanine-based fibroblast activation protein-targeted near-infrared fluorescent probe is designed and it shows high selectivity and sensitivity to cancer cell detection, and in vitro and in vivo imaging. This probe is successfully applied in fluorescence detection of living cells (with a detection limit of 1500 cells per mL). It is believed that many new functions or distributions of FAP could be discovered by this new probe later.

View Article and Find Full Text PDF

Herein we provide an "outside-in" interface segregation strategy to modify polyvinylidene fluoride (PVDF) membranes with anti-fouling, anti-bacterial and non-clotting performances for the first time. The coagulation bath composed of DMAc, water and synthesized copolymer was used to solidify and modify membrane during phase inversion process. The functional polymer e.

View Article and Find Full Text PDF

Targeted molecular imaging has attracted great attention in cancer diagnosis and treatment. However, most clinically used ultrasound contrast agents (UCAs) are non-targeted microbubbles seldom used for cancer imaging. Here, we fabricated fluorescent nanobubbles (NBs) by encapsulation of liquid tetradecafluorohexane (CF) within biodegradable photoluminescent polymers (BPLPs) through an emulsion-evaporation process and conjugation of PNBL-NPY ligand for specific targeting of Y receptors overexpressed in breast tumors.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI), a sophisticated promising three-dimensional tomographic noninvasive diagnostic technique, has an intrinsic advantage in safety compared with radiotracer and optical imaging modalities; however, MRI contrast agents are less sensitive than complexes used in other imaging techniques. Usually the clinically used Gd-based complexes MRI-T contrast agents are toxic; therefore, the demand for nontoxic novel T-weighted MRI candidates with ultrasensitive imaging and advanced functionality is very high. In this research, silica-coated ultra-small monodispersed super-paramagnetic iron oxide nanoparticles were synthesized via a thermal decomposition method, which demonstrated themselves as a high performance T-weighted MRI contrast agent for heart, liver, kidney and bladder based on in vivo imaging analyses.

View Article and Find Full Text PDF

By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy.

View Article and Find Full Text PDF

The aim of this study is to explore an improved double emulsion technology with in situ reaction of lysine (Lys) and glutaraldehyde (GA) for fabricating autofluorescent Lys-poly(lactic-co-glycolic acid)-GA (Lys-PLGA-GA) microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Scanning electron microscope (SEM) and static light scattering (SLS) results show that 80% of the Lys-PLGA-GA microcapsules are larger than 1.0 μm and 90% of them are smaller than 8.

View Article and Find Full Text PDF

Early diagnosis of cancer greatly increases the chances of successful treatment by radical resection. The sensitivity of magnetic resonance imaging (MRI) techniques for detecting early stage tumors can be increased with the assistance of a positive MRI contrast agent. However, the traditional positive MRI contrast agents, such as Gd-chelates and Gd-based inorganic nanoparticles, are often limited by their cytotoxicity and low specificity.

View Article and Find Full Text PDF

Multifunctional Fe(3)O(4)-TiO(2) nanocomposites with Janus structure for magnetic resonance imaging (MRI) and potential photodynamic therapy (PDT) were synthesized, in which Fe(3)O(4) was used as a MRI contrast agent and TiO(2) as an inorganic photosensitizer for PDT. Their morphology, structure, and MRI and PDT performance were characterized, respectively. Moreover, the location of Fe(3)O(4)-TiO(2) nanocomposites in MCF-7 cells was also investigated by the staining of Prussian blue and alizarin red, respectively.

View Article and Find Full Text PDF