Publications by authors named "Lingbing Yang"

Hollow polymer microcapsules as drug carriers have the advantages of drug protection, storage, and controlled release. Microcapsules combined with tissue engineering scaffolds such as electrospun microfibers can enhance long-term local drug retention. However, the combination methods of microcapsules and fibers still need to be further explored.

View Article and Find Full Text PDF

The foreign-body reaction (FBR) caused by the implantation of synthetic polymer scaffolds seriously affects tissue-biomaterial integration and tissue repair. To address this issue, we developed a cell membrane-biomimetic coating formed by "click"-mediated liposome immobilization and fusion on the surface of electrospun fibers to mitigate the FBR. Utilization of electrospun polystyrene microfibrous scaffold as a model matrix, we deposited azide-incorporated silk fibroin on the surface of the fibers by the layer-by-layer assembly, finally, covalently modified with clickable liposomes via copper-free SPAAC click reaction.

View Article and Find Full Text PDF

Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability.

View Article and Find Full Text PDF

Graphene-based substrates are emerging as a promising functional platform for biomedical applications. Although dispersible graphene sheets have been demonstrated to be biodegradable, their assembled macroscopic architectures are biopersistent because of strong π-π interactions. In this study, we developed a nacre-inspired graphene-silk nanocomposite film by vacuum filtration with a subsequent green chemical reduction procedure.

View Article and Find Full Text PDF