Publications by authors named "Linga Banoth"

Enzymes play an important role in diverse industries and are critical components of many industrial products, yet, their application is limited due to their sensitivity to environmental conditions, recovery challenges, and susceptibility to inhibition. Immobilizing enzymes onto a suitable support matrix imparts higher resistance and improves operational flexibility, recyclability, and reusability. Lignin, a renewable and abundant biopolymer derived from the paper and pulp industry, has emerged as one of the prominent materials to be incorporated in support matrices.

View Article and Find Full Text PDF

An enzymatic approach for the synthesis of Molnupiravir has been developed using immobilized lipase as a biocatalyst. This method involves a concise process of the regioselective esterification of uridine with isobutyric anhydride using Lipase (Addzyme-011). This efficient route gets 97% conversion of uridine , with an overall 73% yield of molnupiravir in two steps.

View Article and Find Full Text PDF

The β-adrenergic receptor blocking agents are an important class of drug molecules. The present study reports a new chemo and chemo-enzymatic synthetic process for (RS)-, (R)-, and (S)-bunolol, one of the potent β-adrenergic receptor blocker. In chemo-enzymatic process, CAL L4777 lipase was employed for enantioselective kinetic resolution to synthesize the enantiopure (R)-alcohol and (S)-ester from the corresponding racemic alcohol.

View Article and Find Full Text PDF

In the present study, efficient enzymatic methods were developed using a recombinant metagenomic lipase (LipR1) for the synthesis of corresponding esters by the transesterification of five different pharmaceutically important secondary alcohols. The recombinant lipase (specific activity=87m6U/mg) showed maximum conversion in presence of ionic liquid with Naphthyl-ethanol (eeP=99%), Indanol and Methyl-4 pyridine methanol (eeS of 98% and 99%) respectively in 1h. Vinyl acetate was found as suitable acyl donor in transesterification reactions.

View Article and Find Full Text PDF

A biocatalytic route for the synthesis of a potential β-blocker, (S)-moprolol is reported here. Enantiopure synthesis of moprolol is mainly dependent on the chiral intermediate, 3-(2-methoxyphenoxy)-propane-1,2-diol. Various commercial lipases were screened for the enantioselective resolution of (RS)-3-(2-methoxyphenoxy)propane-1,2-diol to produce the desired enantiomer.

View Article and Find Full Text PDF

A new chemoenzymatic route is reported to synthesize acebutolol, a selective β1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)- and (S)-N-(3-acetyl-4-(3-chloro-2-hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner.

View Article and Find Full Text PDF

The present work reports the Metschnikowia koreensis-catalyzed one-pot deracemization of secondary alcohols/1,2-diols and their derivatives with in vivo cofactor regeneration. Reaction is stereoselective and proceeds with sequential oxidation of (R)-secondary alcohols to the corresponding ketones and the reduction of the ketones to (S)-secondary alcohols. Method is applicable to a repertoire of racemic aryl secondary alcohols and 1,2-diols establishing a wide range of substrate specificity of M.

View Article and Find Full Text PDF

The intracellular cobalt-type nitrile hydratase was purified from the bacterium Rhodococcuserythropolis. The pure enzyme consisted of two subunits of 29 and 30 kDa. The molecular weight of the native enzyme was estimated to be 65 kDa.

View Article and Find Full Text PDF