USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology.
View Article and Find Full Text PDFNUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.
View Article and Find Full Text PDFTwo-dimensional (2D) transition-metal carbides and nitrides (MXenes), especially TiCT nanosheets, offer high conductivities comparable to metal, and are very promising for fabricating high performance electromagnetic interference (EMI) shielding materials. Due to the weak gelation capability of MXenes, MXene/graphene hybrid aerogels were mostly studied. Among those studied, anisotropic hybrid aerogels showed excellent electrical properties in certain direction due to the intrinsic anisotropic properties of 2D materials.
View Article and Find Full Text PDFGraphene oxide (GO) was discovered as a liquid crystalline (LC) phase formation in its water dispersion and expanded to a large number of applications, such as highly ordered GO sheets papers, films, and foams. However, there are still few efficient ways to prepare graphene oxide liquid crystals (GOLCs) with long-range highly ordered flakes. In this work, after carefully studying the rheological properties of GO aqueous dispersions at different concentrations, we have provided a new method to prepare holistically-oriented GOLCs through a designed coat-hanger die.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Cost-effective copper conductive inks are considered as the most promising alternative to expensive silver conductive inks for use in printed electronics. However, the low stability and high sintering temperature of copper inks hinder their practical application. Herein, we develop rapidly customizable and stable copper-nickel complex inks that can be transformed in situ into uniform copper@nickel core-shell nanostructures by a self-organized process during low-temperature annealing and immediately sintered under photon irradiation to form copper-nickel alloy patterns on flexible substrates.
View Article and Find Full Text PDFAdditive printing techniques have been widely investigated for fabricating multilayered electronic devices. In this work, a layer-by-layer printing strategy is developed to fabricate multilayered electronics including 3D conductive circuits and thin-film transistors (TFTs) with low-temperature catalyzed, solution-processed SiO (LCSS) as the dielectric. Ultrafine, ultrasmooth LCSS films can be facilely formed at 90 °C on a wide variety of organic and inorganic substrates, offering a versatile platform to construct complex heterojunction structures with layer-by-layer fashion at microscale.
View Article and Find Full Text PDFThe directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Stretchable wiring and stretchable bonding between a rigid chip/component and a stretchable substrate are two key factors for stretchable electronics. In this study, a highly conductive stretchable paste has been developed with commercial Ag microflakes and poly(dimethylsiloxane), which can be used to fabricate stretchable wirings and bondings under a low curing temperature of 100 °C with printing method. Herein, recoverabilities as to recovery time and recovery resistance of the wirings are defined and discussed.
View Article and Find Full Text PDFAlthough stretchable transparent conductors, stemmed from the strategies of both conductive composite and structural design of nonstretchable conductors, have been extensively studied, these conductors either suffer from low stretchability or require a complex fabrication process, which drastically limits their practical applications. Here, we propose a novel strategy combining the design of substrates and a simple template-assisted transfer printing process to fabricate three-dimensional (3D) transparent conductors. The strategy not only eliminates the complex and costly fabrication processes but it also endows conductors with high stretchability and long-term stability, thanks to the controllable strain distribution as well as the seamless connection between the conductor layer and the substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
Printable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates.
View Article and Find Full Text PDFMuscle sensory axons induce the development of specialized intrafusal muscle fibers in muscle spindles during development, but the role that the intrafusal fibers may play in the development of the central projections of these Ia sensory axons is unclear. In the present study, we assessed the influence of intrafusal fibers in muscle spindles on the formation of monosynaptic connections between Ia (muscle spindle) sensory axons and motoneurons (MNs) using two transgenic strains of mice. Deletion of the ErbB2 receptor from developing myotubes disrupts the formation of intrafusal muscle fibers and causes a nearly complete absence of functional synaptic connections between Ia axons and MNs.
View Article and Find Full Text PDFThe pathway mediating reciprocal inhibition from muscle spindle afferents (Ia axons) to motoneurons (MNs) supplying antagonist muscles has been well studied in adult cats, but little is known about how this disynaptic pathway develops. As a basis for studying its development, we characterized this pathway in mice during the first postnatal week, focusing on the projection of quadriceps (Q) Ia axons to posterior biceps-semitendinosis (PBSt) MNs via Ia inhibitory interneurons. Synaptic potentials in PBSt MNs evoked by Q nerve stimulation are mediated disynaptically and are blocked by strychnine, implying that glycine is the major inhibitory transmitter as in adult cats.
View Article and Find Full Text PDFChanges in protein-protein interactions may allow polypeptides to perform unexpected regulatory functions. Mammalian ShcA docking proteins have amino-terminal phosphotyrosine (pTyr) binding (PTB) and carboxyl-terminal Src homology 2 (SH2) domains, which recognize specific pTyr sites on activated receptors, and a central region with two phosphorylated tyrosine-X-asparagine (pYXN) motifs (where X represents any amino acid) that each bind the growth factor receptor-bound protein 2 (Grb2) adaptor. Phylogenetic analysis indicates that ShcA may signal through both pYXN-dependent and -independent pathways.
View Article and Find Full Text PDF