Publications by authors named "LingYang Wang"

Clarithromycin (CLA) is the preferred drug for treating respiratory infections in pediatric patients, but it has the drawbacks of extreme bitterness and poor water solubility. The purpose of this study was to improve solubility and mask the extreme bitterness of CLA. We use Hot Melt Extrusion (HME) to convert CLA and Eudragit E100 into Solid Dispersion (SD).

View Article and Find Full Text PDF

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties.

View Article and Find Full Text PDF

Highly toxic reactive oxygen species (ROS), crucial in inducing apoptosis and ferroptosis, are pivotal for cell death pathways in cancer therapy. However, the effectiveness of ROS-related tumor therapy is impeded by the limited intracellular ROS and substrates, coupled with the presence of abundant ROS scavengers like glutathione (GSH). In this research, we developed acid-responsive, iron-coordinated polymer nanoparticles (PPA/TF) encapsulating a mitochondrial-targeting drug alpha-tocopheryl succinate (α-TOS) for enhanced synergistic tumor treatment.

View Article and Find Full Text PDF

Correction for 'Supramolecular self-assembly of amantadine hydrochloride with ferulic acid dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal' by Ling-Yang Wang , , 2021, , 3988-3999, https://doi.org/10.1039/D1AN00478F.

View Article and Find Full Text PDF

Acute lymphocytic leukemia (ALL) is a deadly cancer that not only affects adults but also accounts for about 25% of childhood cancers. Timely and accurate diagnosis of the cancer is an important premise for effective treatment to improve survival rate. Since the image of leukemic B-lymphoblast cells (cancer cells) under the microscope is very similar in morphology to that of normal B-lymphoid precursors (normal cells), it is difficult to distinguish between cancer cells and normal cells.

View Article and Find Full Text PDF

In order to exploit the advantages to the full of multidrug salification strategy in amending the pharmaceutical properties of drugs both in vitro and in vivo, and further to open up a new way for its applications in bacteria-virus mixed cross-infection drugs, a novel dual-drug crystalline molecular salt hybridizing antibacterial drug sulfamethoxazole (SFM) with antiviral ingredient amantadine (ATE), namely SFM-ATE, is successfully designed and synthesized via multidrug salification strategy oriented by proton exchange reaction. The crystal structure of the firstly obtained molecular salt is precisely identified by employing single-crystal X-ray diffraction and multiple other techniques. The results show that, in the crystal lattice of molecular salt SFM-ATE, the classical hydrogen bonds together with charge-assisted hydrogen bonds contribute to two- dimensional networks, between which the hydrophobic interaction plays an important role.

View Article and Find Full Text PDF

To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.

View Article and Find Full Text PDF

For highlighting the predominance of phenolic acid nutraceutical ferulic acid (FR) in regulating the in vivo/vitro performances of anticancer drug 5-fluorouracil (Flu) and strengthening their cooperativity in antitumor effect, thus achieving a major breakthrough in the development of drug-nutraceutical cocrystal with synergistic antitumor action, a cocrystallization strategy of dual optimization is created, in which both the in vivo and vitro natures of Flu are improved by exploiting the FR's excellent physicochemical property. Moreover, Flu's anticancer effects were promoted by exerting the assistant antitumor peculiarity of FR. Such dual optimization of FR for Flu in physicochemical properties and anticancer activities is beneficial for realizing synergistic augmentation effect by taking the benefit of the cooperativeness of Flu and FR in the anticancer ability.

View Article and Find Full Text PDF

The title compound, CHNO, has a nearly planar geometry. In the crystal, the mol-ecules are assembled into chains parallel to the [11] direction by O-H⋯O and C-H⋯O hydrogen bonds.

View Article and Find Full Text PDF

With the purpose of overcoming the serious hepatotoxicity of antituberculosis drug isoniazid (INH), a cocrystallization strategy based on complementary advantages was implemented by choosing the hepatoprotective nutraceutical quercetin (QCT) as the cocrystal former. The strategy plays the solubility advantage of INH to improve the bioavailability of the insoluble QCT, thereby significantly enhancing the QCT's hepatoprotective effects. The optimized protective effects of QCT, in turn, feed back to INH to reduce its hepatotoxicity.

View Article and Find Full Text PDF

Introduction: Multiple sclerosis (MS) is one of the most common autoimmune diseases of the central nervous system (CNS). CNS has its own unique structural and functional features, while the lack of precision regulatory element with high specificity as therapeutic targets makes the development of disease treatment in the bottleneck. Recently, the immunomodulation and neuroprotection capabilities of bone marrow stromal stem cells (BMSCs) were shown in experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

A new trinickel(II) complex bridged by N-[3-(dimethylamino)propyl]- N'-(2-hydroxylphenyl)oxamido (H pdmapo), namely [Ni (pdmapo) (H O) ]⋅4CH OH, was synthesized and characterized by X-ray single-crystal diffraction and other methods. In the molecule, two symmetric cis-pdmapo mononickel(II) complexes as a "complex ligand" using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.

View Article and Find Full Text PDF

Myocardial injury activates inflammatory mediators and provokes the integration of BCL-2/adenovirus E1B 19KD interacting protein 3 (BNIP3) into mitochondrial membranes. Translocation of BNIP3 to mitochondria inexorably causes mitochondrial fragmentation. Heart failure (HF) epitomizes the life-threatening phase of BNIP3-induced mitochondrial dysfunction and cardiomyocyte death.

View Article and Find Full Text PDF