Publications by authors named "LingHong Huang"

The tumor microenvironment (TME) is enriched with immunosuppressive factors that inhibit the recruitment and activation of dendritic cells (DCs), thereby reducing the efficacy of tumor immunotherapy. To address this challenge, we propose an innovative strategy involving the sequential administration of MCM magnetic nanoparticles carrying PROTAC drugs (MCM/ARV) and M-BMDCs in the TEM. This approach not only replenishes DCs in the TEM, but also increases antigen uptake through the attraction between the magnetic particles and promotes DC activation and antigen presentation, thus continuously enhancing the tumor immune cycle.

View Article and Find Full Text PDF

The prevalence of obesity has continued to rise, and obesity and its attendant metabolic disorders are major global health threat factors. Among the current interventions for obesity, none have demonstrated sustained efficacy in achieving long-term outcomes. So, the identification of therapeutic targets is of paramount importance in the advancement and sustainability of obesity.

View Article and Find Full Text PDF
Article Synopsis
  • Autism Spectrum Disorder (ASD) affects gray matter, but the impact on structural-functional coupling in white matter (WM) is less understood; this study investigates that using brain imaging techniques.
  • The research analyzed data from 89 ASD and 63 typically developing individuals, examining the relationship between WM coupling and ASD severity, utilizing machine learning for prediction accuracy.
  • Findings showed ASD individuals had reduced WM structural-functional coupling, particularly in critical brain areas, and integrating multi-model analysis outperformed single-model approaches in predicting severity of ASD symptoms.
View Article and Find Full Text PDF

Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified.

View Article and Find Full Text PDF

One of the sensitive markers for autoimmune thyroid disease (AITD) clinical identification is thyroid-stimulating hormone receptor antibodies (TRAbs). To quickly distinguish TRAb with distinct antigenic epitopes, a straightforward and uncomplicated technique has not yet been created. The objective of this study is to search for molecular diagnostic targets for different types of AITD {Graves' disease (GD), Graves' orbitopathy (GO), GD with third-degree goiter [GD(3)], hypothyroidism combined with positive TRAb [HT(TRAb+)]} as molecular diagnostic targets.

View Article and Find Full Text PDF

Interleukin-17A (IL-17A) plays a pivotal role in the pathogenesis of Graves' disease (GD), an autoimmune disorder affecting thyroid function, but the detailed regulatory mechanisms remain elusive. Circular RNAs (circRNAs) have emerged as key regulators of IL-17A expression and secretion in autoimmune diseases, yet their specific role in GD, especially within CD4 + T lymphocytes, are not well understood. In this study, a circRNA, circPHF16 (hsa_circ_0090364) was found to be highly expressed in the peripheral blood mononuclear cells and serum of GD patients.

View Article and Find Full Text PDF

Pulmonary fibrosis is an interstitial scarring disease of the lung characterized by poor prognosis and limited treatment options. Tissue transglutaminase 2 (TG2) is believed to promote lung fibrosis by crosslinking extracellular matrix components and activating latent TGFβ. This study assessed physiologic pulmonary function and metabolic alterations in the mouse bleomycin model with TG2 genetic deletion.

View Article and Find Full Text PDF

Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease.

View Article and Find Full Text PDF

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness.

View Article and Find Full Text PDF

Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment.

View Article and Find Full Text PDF

Background: Childhood maltreatment (CM) is a potential risk factor for some neuropsychiatric disorders in adulthood (e.g. depression and anxiety) and alters trajectories of brain development.

View Article and Find Full Text PDF

Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats.

View Article and Find Full Text PDF

Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases.

View Article and Find Full Text PDF

Background: Numerous prior studies have extensively highlighted the significance of the microbiome in association with asthma. While several studies have concentrated on the asthma microbiome in previous research, there is currently a lack of publications that employ bibliometric methods to assess this area.

Methods: In this study, the Web of Science Core Collection database was utilized as the data source, and the SCI-EXPANDED index was employed to ensure that the retrieved data were comprehensive and accurate.

View Article and Find Full Text PDF

Objective: Renal epithelial cell injury and cell-crystal interaction are closely related to kidney stone formation.

Methods: This study aims to explore the inhibition of endocytosis of nano-sized calcium oxalate monohydrate (nano-COM) crystals and the cell protection of corn silk polysaccharides (CCSPs) with different carboxyl contents (3.92, 7.

View Article and Find Full Text PDF

Tumor vaccine therapy, which can induce tumor antigen-specific cellular immune responses to directly kill tumor cells, is considered to be one of the most promising tumor immunotherapies. How to elicit effective tumor antigen-specific cellular immunity is the key for the development of tumor vaccines. However, current tumor vaccines with conventional antigen delivery systems mainly induce humoral immunity but not effective cellular immunity.

View Article and Find Full Text PDF

Introduction: Oxytocin (OXT) is proposed as a potential therapeutic peptide for social dysfunction due to its modulatory actions on socioemotional regulation in humans. While the majority of studies have used intranasal OXT administration, we have recently shown that oral (lingual spray), but not intranasal, administration can significantly enhance activity of the brain reward system in response to emotional faces in males; however, its effects on females are unknown.

Methods: Seventy healthy females participated in the current randomized, placebo-controlled, pharmaco-imaging clinical trial, and the results were compared with our previous data from 75 males who underwent the same protocol.

View Article and Find Full Text PDF

Dendritic cells (DCs)-based tumor vaccines have the advantages of high safety and rapid activation of T cells, and have been approved for clinical tumor treatment. However, the conventional DC vaccines have some severe problems, such as poor activation of DCs in vitro, low level of antigen presentation, reduced cell viability, and difficulty in targeting lymph nodes in vivo, resulting in poor clinical therapeutic effects. In this research, magnetic nanoparticles FeO@Ca/MnCO were prepared and used to actively and efficiently deliver antigens to the cytoplasm of DCs, promote antigen cross-presentation and DC activation, and finally enhance the cellular immune response of DC vaccines.

View Article and Find Full Text PDF

: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. : This study aims to explore the protective effects of four different sulfate groups (-OSO ) of polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection.

View Article and Find Full Text PDF

Tumor vaccines can inhibit or eliminate tumors by vaccinating hosts with tumor antigens to activate antigen-specific immune responses and have gained wild attention. However, their clinical application efficacy is often comprised due to the low safety and poor efficiency of vaccine adjuvants/carriers. Specifically, the adjuvants/carriers usually could not efficiently recruit antigen presenting cells (APCs) to capture the vaccines or directly damage these cells.

View Article and Find Full Text PDF

Background: Graves' disease is a common autoimmune disease. Cytokines and their signalling pathways play a major part in the pathogenesis of Graves' disease; however, the underlying mechanism needs to be clarified.

Aims: The aim of this study was to explore whether circular RNAs participate in the immunological pathology of Graves' disease via cytokine-related signalling pathways.

View Article and Find Full Text PDF

The ideal vaccine delivery systems can not only deliver antigens in intelligent manners but also act as adjuvants. Recently found that Mn can effectively stimulate anti-tumor immune responses, and Ca can regulate autophagy to promote the cross-presentation of antigens. Thus, we constructed such a manganese-containing multimode vaccine delivery system by using calcium-doped manganese carbonate microspheres (Ca@MnCO) and perforin-listeria hemolysin (LLO), as termed as Ca@MnCO/LLO.

View Article and Find Full Text PDF

Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has forced the development of vaccines. Reports have suggested that vaccines play a role in inducing autoimmune diseases (AIDs). Scattered cases have reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may promote thyroid disease, including Graves' disease (GD).

View Article and Find Full Text PDF

ZIF-8 MOFs, with their large specific surface area and void volume, unique biodegradability and pH sensitivity, and significant loading capacity, have been widely used as carrier materials for bioactive molecules such as drugs, vaccines and genes. In these applications, ZIF-8 MOFs are usually delivered intravenously. Therefore, it is necessary to know the interaction between ZIF-8 MOFs and blood components, which from this sense is a key factor affecting their delivery effectiveness and biosafety.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets.

View Article and Find Full Text PDF