Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K channels, is a major determinant of the ability of neurons to generate high-frequency action potentials.
View Article and Find Full Text PDFNerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons.
View Article and Find Full Text PDFCircular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury.
View Article and Find Full Text PDFOxid Med Cell Longev
March 2022
Chronic inflammatory pain seriously affects patients' quality of life because of a paucity of effective clinical treatments caused, at least in part, by lack of full understanding of the underlying mechanisms. miRNAs are known to be involved in inflammatory pain via silencing or degrading of target mRNA in the cytoplasm. The present study provides a novel mechanism by which miRNA-22 positively regulates metal-regulatory transcription factor 1 () in the nuclei of neurons in the dorsal horn of the spinal cord.
View Article and Find Full Text PDFThe methyltransferase-like 3 (Mettl3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for RNA N6-methyladenosine (m6A) modification, which plays an important role in gene post-transcription modulation. Although RNA m6A is enriched in mammalian neurons, its regulatory function in nociceptive information processing remains elusive. Here, we reported that Complete Freund's Adjuvant (CFA)-induced inflammatory pain significantly decreased global m6A level and m6A writer Mettl3 in the spinal cord.
View Article and Find Full Text PDFDysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice.
View Article and Find Full Text PDFA Gram-stain-negative, non-flagellated, short rod-shaped bacterium, designated XY-R6, was isolated from the rhizosphere soil of a mangrove plant, Kandelia candel (L.) Druce, in Mai Po Nature Reserve, Hong Kong. Growth of strain XY-R6 was observed at pH 5.
View Article and Find Full Text PDFBackground: Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown.
Methods: The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund's adjuvant.
S-nitrosylation, the nitric oxide-derived post-translational modification of proteins, plays critical roles in various physiological and pathological functions. In this present study, a rat model of cerebral ischemia and reperfusion by four-vessel occlusion was generated to assess MKK4 S-nitrosylation. Immunoprecipitation and immunoblotting were performed to evaluate MKK4 S-nitrosylation and phosphorylation.
View Article and Find Full Text PDFUnlabelled: DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord.
View Article and Find Full Text PDFChronic pain is still a basic science and clinical challenge. Unraveling of the neurobiological mechanisms involved in chronic pain will offer novel targets for the development of therapeutic strategies. It is well known that central sensitization in the anterior cingulate cortex (ACC) plays a critical role in initiation, development, and maintenance of chronic pain.
View Article and Find Full Text PDFIn the title compound, C(14)H(11)Cl(2)NO, the two benzene rings are non-coplanar [dihedral angle = 60.9 (3)°]. In the crystal, an amide N-H⋯O hydrogen bond links the mol-ecules into chains which extend along (001).
View Article and Find Full Text PDFContaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate.
View Article and Find Full Text PDFThe title compound, C(6)H(5)Cl(2)N, is almost planar, with an r.m.s.
View Article and Find Full Text PDFNontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica, interact actively with plants.
View Article and Find Full Text PDFThe title mol-ecule, C(14)H(10)N(4)O(6), crystallizes with one half-mol-ecule in the asymmetric unit; the mid-point of the N-N bond lies on an inversion centre. The nitro and amide groups are twisted with respect to the benzene ring, making dihedral angles of 14.6 (5) and 31.
View Article and Find Full Text PDF