Publications by authors named "Ling-Yu Zeng"

Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, is frequently overexpressed in cancer cells. However, roles and the mechanism of PLK4 in the leukemiagenesis of acute myeloid leukemia (AML) remain unclear. In this study, the PLK4 inhibitor Centrinone and the shRNA knockdown were used to investigate roles and the mechanism of PLK4 in the leukemiagenesis of AML.

View Article and Find Full Text PDF

Our previous studies have implicated Caspase-1 signaling in driving the proinflammatory state of acute graft versus host disease (aGVHD). Therefore, we aimed to elucidate the mechanism of Caspase-1 in in murine models of aGVHD through specific inhibition of its activity with the decoy peptide Ac-YVAD-CMK. We transplanted bone marrow from donor C57BL/6 (H-2b) mice into recipient BALB/c (H-2Kd) mice and randomized the recipients into the following treatment cohorts: (1) allogeneic hematopoietic stem cell transplantation and splenic cell infusion control (PBS group); (2) low dose Ac-YVAD-CMK (AC low group); (3) and high dose Ac-YVAD-CMK (AC high group).

View Article and Find Full Text PDF

Objective: To investigate the effects of combined infusion of mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) on lung injury after hematopoietic stem cell transplantation (HSCT).

Methods: The experiment was divided into normal control group, irradiation group, bone marrow cell transplantation group (BMT group), BMT+EPC group, BMT+MSC group and BMT+EPC+MSC group. The model of HSCT was established, on the 30th day after transplantation, the mice were sacrificed.

View Article and Find Full Text PDF

Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.

View Article and Find Full Text PDF

Objective: To explore the role of Ca-NFAT signaling pathway in Ph-ALL drug resistance mediated by bone marrow stromal cells.

Methods: The transcription level of NFAT mRNA in Sup-B15 cells and Ph ALL primary cells was detected by polymerase chain reaction. The expression of P-glycoprotein in Sup-B15 cells was detected by flow cytometry.

View Article and Find Full Text PDF

Objective: To investigate the effect of stably down-regulating the FMI expression of K562 cells on the sensitivity of K562 cells to Imatinib (IM) and its possible mechanism.

Methods: Western-blot was used to detect the expression of FMI protein in K562 cells and peripheral blood mononuclear cells from the patients with chronic myelogenous leukemia, chronic myeloid blast crisis and healthy volunteers. The specific interference sequences targeting at the human FMI gene were designed and ligated into the lentiviral vector LV3; the three plasmid system-packaged lentivirus particles were used to transfect K562 cells to screen K562 cells that stably down-regulated FMI.

View Article and Find Full Text PDF

Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations were important for the leukemogenesis of acute leukemia (AL). The JAK2 R867Q somatic mutation is detected in a subset of AL patients. However, roles of JAK2 R867Q mutation in the pathogenesis of AL remain unclear.

View Article and Find Full Text PDF

Background: This study investigated the effect of flight transport stress on beagles' routine blood indexes and biochemical parameters and evaluated the anti-stress effect of dangshen ().

Methods: We selected 12 beagles and divided them into two groups. One group was treated with dangshen decoction two hours before the flight, and the other group was untreated.

View Article and Find Full Text PDF

Oncogenic activation of tyrosine kinase signaling pathway is recurrent in human leukemia. The acquired Janus kinase 2 (JAK2) K607N somatic mutation was detected in about 6.8% of acute myeloid leukemia (AML) patients.

View Article and Find Full Text PDF

Objective: To evaluate the long-term prognosis of CML patients whose BCR-ABL transcript level was warning and best response at 12 months of treatment with tyrosine kinase inhititor (TKI), and to investigate the factors affecting therapeutic efficacy and prognosis.

Methods: The clinical data of patients with newly diagnosed CML were analyzed retrospectively. According to BCR-ABL transcript level, the 80 patients were divided into group A and group B, the patients with BCR-ABL >0.

View Article and Find Full Text PDF

Downregulation of suppressor of cytokine signalling-1 (SOCS1) is one of the vital reasons for JAK1-STAT3 pathway activation in acute myeloid leukaemia (AML). CUE domain-containing 2 (CUEDC2) was a novel interacting partner of SOCS1 and a positive correlation between the expression of CUEDC2 and SOCS1 was confirmed in primary AML cells and AML cell lines without SOCS1 promoter methylation. We aimed to explore roles of CUEDC2 in regulating ubiquitin-mediated degradation of SOCS1 in the leukaemogenesis of AML.

View Article and Find Full Text PDF

Objective: To explore the effect of NLRP1 on the liver dysfunction following allogeneic hematopoietic stem cell transplantation(allo-HSCT).

Methods: The mouse model of allo-HSCT was established by using C57BL/6 and NLRP mice were used as the recipients: BABL/c mice were used as donors). The chimera rates of donor's bone marrow cells were assayed by flow cytometry.

View Article and Find Full Text PDF

Objective: To investigate the effect of steadily down-regulating the expression of VE-cadherin on the chemotheraputic sensitivity of K562 cells, and explore its possible mechanism.

Methods: Specifically targeting interference sequences carrying human VE-cadherin were designed, the recombinant lentiviral vector containing the IRES-GFP and NEO segment was constructed; recombinant lentivirus was generated by three-plasmids packing system, and transfected into K562 cells, then the cells steadily down-regulated were sorted. CCK-8 assay was performed to evaluate the VE-cadherin of chemotherapeutic (Imatinib) sensitivity of K562 cells.

View Article and Find Full Text PDF

Although roles of somatic JAK2 mutations in clonally myeloproliferative neoplasms (MPNs) are well established, roles of germline JAK2 mutations in the pathogenesis of MPNs remain unclear. Recently, a novel activating, germline JAK2 F556V mutation was identified and involved in the pathogenesis of MPNs, but, its pathogenesis mechanism was still unknown. In this study, homology models of JAK2 demonstrated that F556 located between two threonine residues which interacted with ATP phosphate groups by hydrogen bonds, Thr555 with the γ-phosphate and Thr557 with the β-phosphate in the active site of JAK2's JH2 domain.

View Article and Find Full Text PDF

Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients.

View Article and Find Full Text PDF

Arginine kinase (AK) catalyzes the reversible phosphorylation of arginine by ATP, yielding the phosphoarginine. Amino acid residues in the guanidine specificity (GS) region play important roles in the guanidine-recognition. However, little is known about roles of amino acid residue G66 in the GS region in proteins folding, activity and structural stability.

View Article and Find Full Text PDF

Creatine kinase (CK) is a key enzyme for cellular energy metabolism, catalyzing the reversible phosphoryl transfer from phosphocreatine to ADP in vertebrates. CK contains a pair of highly conserved amino acids (H66 and D326) which might play an important role in sustaining the compact structure of CK by linking its N- and C- terminal domains; however the mechanism is still unclear. In this study, spectroscopic, structural modeling and protein folding experiments suggested that D326A, H66P and H66P/D326A mutations led to disruption of the hydrogen bond between those two amino acid residues and form the partially unfolded state which made it easier to be inactivated and unfolded under environmental stresses, and more prone to form insoluble aggregates.

View Article and Find Full Text PDF

Objective: To explore the effect of Caspase 1 inhibitor Ac-YVAD-CMK on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation(allo-HSCT) and its mechanism.

Methods: Experiments were divided randomly into 3 groups: allogeneic hematopoietic stem cell transplantation combined with splenic cell infusion group (TS group, n=12), allogeneic hematopoietic stem cell transplantation combined with splenic cell infusion plus injection of low dose Caspase 1 inhibitor group (TS+low dose of C group, n=16) and plus high dose Caspase1 inhibitor (TS+high dose of C group, n=19). The body weight of mice in each group was dynamically detected, and the clinical manifestation of GVHD and score of aGVHD were determined, and the chimerism rate of mice was detected after transplantation for 14 days.

View Article and Find Full Text PDF

Here, we report the hypoxia-responsive ionizable liposomes to deliver small interference RNA (siRNA) anticancer drugs, which can selectively enhance cellular uptake of the siRNA under hypoxic and low-pH conditions to cure glioma. For this purpose, malate dehydrogenase lipid molecules were synthesized, which contain nitroimidazole groups that impart hypoxia sensitivity and specificity as hydrophobic tails, and tertiary amines as hydrophilic head groups. These malate dehydrogenase molecules, together with DSPE-PEG2000 and cholesterol, were self-assembled into O',O-(3-(dimethylamino)propane-1,2-diyl) 16-bis(2-(2-methyl-5-nitro-1-imidazol-1-yl)ethyl) di(hexadecanedioate) liposomes (MLP) to encapsulate siRNA through electrostatic interaction.

View Article and Find Full Text PDF

Platelets are known to play a critical role in thrombosis and hemostasis. However, recent studies demonstrated that beyond their role in thrombosis and hemostasis, platelets are also involved in the regulation of tissue repair and regeneration. Increasing number of studies on the roles of platelets in tissue repair showed that various growth factors, chemokines as well as cytokines secreted from activated platelets regulate injured tissue repair and regeneration with the main mechanisms being through regulation of cell migration, proliferation, and angiogenesis, cell apoptosis and survival.

View Article and Find Full Text PDF

Recently there are increasing evidence of the existence of an immune-mediated endothelial-cell injury in the acute graft-versus-host disease (aGVHD). Endothelial cells are an important target in the process of GVHD immune attacking, and vascular end thelial injure is an early event of tissue injury caused by aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Biomarkers for endothelial damage were consisted with endothelia injury, which may be considered a valuable marker to confirm GVHD diagnosis.

View Article and Find Full Text PDF

Numerous previous studies have suggested that cytotoxic T lymphocyte antigen-4 (CTLA-4) plays an important role in acute graft-versus-host disease (GVHD). How CTLA-4 acts in regulating acute GVHD remains unknown, however. In the present study, we found that, compared with healthy controls, CTLA-4 plasma and relative mRNA levels in patients with acute GVHD were initially decreased and then markedly elevated after 28 days of treatment.

View Article and Find Full Text PDF

Objective: To investigate the effects of Th1/Th17 cell imbalance on the pathogenesis of acute graft-versus-host disease (GVHD) in mice.

Methods: In a murine GVHD model of C57BL/6 (H-2(b)), a low dose of halofuginone (HF) was applied for treating the recipients in order to result in Th1/Th17 imbalance. Rechipient mice were divided into GVHD group (without HF intervention) and GVHD plus HF group (treated by HF).

View Article and Find Full Text PDF

Objective: To investigate the effect of alantolactone on perliferation and apoptosis of multiple myeloma (MM) RPMI-8226 cells, and to explore its possible mechism in vitro and in vivo.

Methods: The RPMI-8226 cells were treated with alantolactone (1, 2.5, 5, 7.

View Article and Find Full Text PDF

Objective: To investigate the effect of ADAM10 inhibitor GI254023X on the proliferation and apoptosis of acute T-lymphoblastic leukemia Jurkat cells and its mechanisms.

Methods: Jurkat cells were treated with different concentrations of GI254023X, the proliferation-inhibition curve was assayed and plotted by CCK-8 method, the cell viability and apoptosis was detected by flow cytometry with Annexin V and 7-AAD staining, the cleavage of Notch1 protein was determined by Western blot, the transcripts of anti-apoptotic genes BCL-2, MCL-1, BCL-xl and Notch1 target gene Hes-1 were detected by real-time PCR.

Results: The GI254023X obviously inhibited the proliferation of Jurkat cells in concentration-dependent manner.

View Article and Find Full Text PDF