Publications by authors named "Ling-Yan He"

Article Synopsis
  • - The study focuses on developing a real-time method to identify and analyze sources of particulate matter (PM) pollution, which is important for reducing pollution levels effectively.
  • - The method, based on chemical mass balance modeling and online monitoring, found that secondary sulfate, secondary organic aerosol, vehicle emissions, and secondary nitrate accounted for 76% of PM sources in Shenzhen during autumn 2019.
  • - The new method was validated against traditional techniques and revealed that vehicle emissions significantly contribute to both primary and secondary organic aerosols, highlighting its potential for improving aerosol pollution control and understanding emissions better.
View Article and Find Full Text PDF

Surface ozone pollution, as a pressing environmental concern, has garnered widespread attention across China. Due to air mass transport, effective control of ozone pollution is highly dependent on collaborative efforts across neighboring regions. However, specific regions with strong internal interactions of ozone pollution are not yet well identified.

View Article and Find Full Text PDF

Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.

View Article and Find Full Text PDF

As non-point source pollution has emerged as a significant global and regional concern, climate change (CC), land use/cover transformation (LUCT), and management practices (MP) play vital roles in addressing nutrient pollution. However, current studies lack comprehensive quantification and consistent conclusions on the response to these factors, especially for management practices. To quantify and elucidate the impact of representative environmental factors on rapidly urbanizing regions, this study focused on the Shenzhen River, which serves as the most typical urbanizing watershed.

View Article and Find Full Text PDF

As precursors of photochemical secondary pollutants, oxygenated volatile organic compounds (OVOCs) play an important role in atmospheric photochemistry. In this study, 23 OVOCs were monitored using a commercial proton transfer reaction time-of-flight mass spectrometer at an urban site in Shenzhen, China. During the campaign, the mean total concentration of OVOCs was 23.

View Article and Find Full Text PDF

Apprehending the hydrological and nutrient variations in rapidly urbanizing watersheds under changing environments is crucial for pollution control and water resource management. However, existing studies have primarily focused on hydrological processes, neglecting water quality aspects, and comprehensive assessment of future runoff and nutrient loads in these watersheds during China's Dual Carbon periods is limited. This study firstly bridges these gaps by constructing multi-scenario with different levels of "Urban Development - Ecological Conservation" and utilizing latest bias-corrected General Circulation Models or Global Climate Models (GCMs) projections to evaluate future runoff and nutrient loads in the Shenzhen River.

View Article and Find Full Text PDF

The Pearl River (PR) is China's second-largest river, playing a crucial role in regulating and supplying water in the southeast. However, for the last decade, the PR has been experiencing water quality deterioration due to population growth, rapid economic development, and diverse human activities, particularly in its delta areas. This study analyzed the characteristics and evolution of eight water quality variables, including pH values (pH), water temperature (WT), dissolved oxygen (DO), five-day biochemical oxygen demand (BOD), permanganate index (PI), total phosphorus (TP), ammonia nitrogen (NHN), and fluoride (F), which were monitored monthly at 16 water quality monitoring stations from January 2009 to August 2019.

View Article and Find Full Text PDF

Patients diagnosed with stable coronary artery disease (CAD) are at continued risk of experiencing acute myocardial infarction (AMI). This study aims to unravel the pivotal biomarkers and dynamic immune cell changes, from an immunological, predictive, and personalized viewpoint, by implementing a machine-learning approach and a composite bioinformatics strategy. Peripheral blood mRNA data from different datasets were analyzed, and CIBERSORT was used for deconvoluting human immune cell subtype expression matrices.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how black carbon (BC) interacts with other materials and its impact on climate, especially in the Pearl River Delta, China, where knowledge is limited.
  • - Researchers used advanced mass spectrometers to analyze submicron BC and its associated materials during different atmospheric conditions: polluted periods (PP) and clean periods (CP).
  • - They discovered that more-oxidized organic factors (MO-OOA) form more readily on BC during polluted periods due to increased photochemical and nighttime reactions, suggesting that these interactions should be included in climate models for better accuracy.
View Article and Find Full Text PDF

Refractory black carbon (rBC) aerosols emitted from incomplete combustion are important climate forcers. Understanding the chemical characteristics and evolution of rBC-related components is particularly crucial to assess rBC environmental impacts. Here, we explored the chemical components of rBC in Shenzhen, China, using a soot-particle aerosol mass spectrometer (SP-AMS).

View Article and Find Full Text PDF

Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm.

View Article and Find Full Text PDF

The sensitivity of cells to chemotherapeutic agents has a major effect on disease outcome in breast cancer patients. Unfortunately, there are numerous factors involved in the regulation of chemosensitivity, and the mechanisms need to be further investigated. Autophagy/Beclin 1 regulator 1 (Ambra1) is a key protein in the crosstalk between autophagy and apoptosis.

View Article and Find Full Text PDF

During the COVID-19 lockdown, atmospheric PM in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O).

View Article and Find Full Text PDF

Identifying the health risk of PM is essential for urban air pollution control. In 2013, China announced the ever-strict national Air Pollution Prevention and Control Action Plan, and its health benefit should be evaluated to provide reference for future policymaking. In this study, we conducted a seven-year (2014-2020) continuous observation of PM in Shenzhen, the third largest city in China, which has relatively good air quality.

View Article and Find Full Text PDF

The role of coarse particles has recently been proven to be underestimated in the atmosphere and can strongly influence clouds, ecosystems and climate. However, previous studies on atmospheric chemistry of volatile organic compounds (VOCs) have mostly focused on the products in fine particles, it remains less understood how coarse particles promote secondary organic aerosol (SOA) formation. In this study, we investigated water-soluble compounds of size-segregated aerosol samples (0.

View Article and Find Full Text PDF

High ozone concentrations have adverse effects on human health and ecosystems. In recent years, the ambient ozone concentration in China has shown an upward trend, and high-quality prediction of ozone concentrations has become critical to support effective policymaking. In this study, a novel hybrid model combining wavelet decomposition (WD), a gated recurrent unit (GRU) neural network and a support vector regression (SVR) model was developed to predict the daily maximum 8 h ozone.

View Article and Find Full Text PDF

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (O = O + NO) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are important precursors of photochemical pollution. However, a substantial fraction of VOCs, namely, oxygenated VOCs (OVOCs), have not been sufficiently characterized to evaluate their sources in air pollution in China. In this study, a total of 119 VOCs, including 60 OVOCs in particular, were monitored to provide a more comprehensive picture based on different online measurement techniques, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and online gas chromatography/mass spectrometry (GC/MS), at a receptor site in southeastern China during a photochemically active period.

View Article and Find Full Text PDF

Cross-regional transport potentially contributes to PM nitrate (pNO), and this can occur as indirect transport, through which pNO precursors are transported to targeted regions, wherein they subsequently react with locally emitted ones to produce pNO. However, the process has been rarely studied, which limits its comprehensive understanding. We applied the CMAQ model to study the contributions and mechanisms of pNO transport during autumn in the Pearl River Delta (PRD), a metropolitan region under the growing influence of cross-regional transport on PM pollution.

View Article and Find Full Text PDF

The volatility of atmospheric aerosols greatly influences the gas-particle partitioning, chemical mechanisms and lifetime of aerosols. Due to the complex composition, the volatility of organic aerosol is one of the major sources of uncertainty in measuring and modeling ambient aerosols. Despite high aerosol loading in the atmosphere in China, especially in winter, few field measurements were conducted targeting the volatility of ambient organic aerosol (OA).

View Article and Find Full Text PDF

Oxygenated volatile organic compounds (OVOCs) are critical atmospheric ozone and secondary organic aerosol (SOA) precursors and radical sources, while understanding of OVOC sources in the atmosphere, especially with large anthropogenic emissions, still has large uncertainties. A high-sensitivity proton transfer reaction mass spectrometer (PTR-MS) was deployed in vastly different atmospheres in southern China, including an urban site (SZ-U), a regional site (NA-R), and a background site (NL-B). Four critical OVOCs, i.

View Article and Find Full Text PDF

High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator.

View Article and Find Full Text PDF

Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes).

View Article and Find Full Text PDF

A tunable high-order sideband spectra generation scheme is presented by using a photonic molecule optomechanical system coupled to a waveguide beyond the perturbation regime. The system is coherently driven by a two-tone laser consisting of a continuous-wave control field and a pulsed driving field which propagates through the waveguide. The frequency spectral feature of the output field is analyzed via numerical simulations, and we confirm that under the condition of intense and nanosecond pulse driving, the output spectrum exhibits the properties of high-order sideband frequency spectra.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted in Ningbo from December 2012 to October 2013 analyzed PM2.5 samples at five sites across four seasons, focusing on organic carbon (OC) and elemental carbon (EC) levels.
  • The annual average concentration of PM2.5 was found to be 51.6 µm.m-3, with OC contributing 17% and EC 6%, largely influenced by regional transport during winter and spring.
  • The seasonal variations showed that secondary organic carbon (SOC) peaks in summer, while coal burning in North China significantly affects the OC/EC ratio in winter; however, estimating SOC's contribution proved tricky in winter and spring due to regional factors.
View Article and Find Full Text PDF