Increasing evidence suggests that the use of potent neuroprotective agents featured with novel pharmacological mechanism would offer a promising strategy to delay or prevent the progression of neurodegeneration. Here, we provide the first demonstration that the chiral nonracemic isochroman-2H-chromene conjugate JE-133, a novel synthetic 1,3-disubstituted isochroman derivative, possesses superior neuroprotective effect against oxidative injuries. Pretreatment with JE-133 (1-10 μM) concentration-dependently prevented HO-induced cell death in SH-SY5Y neuroblastoma cells and rat primary cortical neurons.
View Article and Find Full Text PDFIron dyshomeostasis and mitochondrial impairments are both vitally important for the progression of many neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Nevertheless, how these two pathological phenomena are linked with one another remains unclear, especially in neurons. To address the question, a model of iron overload was established with exposure of rat primary cortical neurons to excessive iron.
View Article and Find Full Text PDFTwo dimeric diterpenoids, taxodikaloids A (1) and B (2), have been identified from the seeds of Taxodium ascendens. The diterpenoid structures were established on the basis of comprehensive spectroscopic analysis, and the absolute configuration of taxodikaloid A (1) was further confirmed by single-crystal X-ray diffraction. Both structures feature an unprecedented oxazoline ring linkage connecting two abietane diterpenoid monomers.
View Article and Find Full Text PDFAim: Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons.
View Article and Find Full Text PDFA series of chiral oxazino-indoles have been synthesized via a key intermolecular oxa-Pictet-Spengler reaction. These compounds exhibited significant and selective neuroprotective effects against Aβ25-35-induced neuronal damage. This is the first report of evaluating the influence of chiral diversity of oxazino-indoles on their neuroprotective activities, with the structure-activity relationship been analyzed.
View Article and Find Full Text PDF