The cytoplasmic domains of UNC5 are responsible for its netrin-mediated signaling events in axonal migrations, blood vessel patterning, and apoptosis, although the molecular mechanisms governing these processes are unknown. To provide a foundation for the elucidation of the UNC5-mediated signaling mechanism, we determined the crystal structure of the cytoplasmic portion of UNC5b. We found that it contains three distinctly folded domains, namely ZU5, UPA, and death domain (DD).
View Article and Find Full Text PDFPDZ domain-containing scaffold protein Par-3 is the central organizer of the evolutionarily conserved cell polarity-regulatory Par-3.Par-6.atypical protein kinase C complex.
View Article and Find Full Text PDFCytoplasm-nucleus shuttling of phosphoinositol 3-kinase enhancer (PIKE) is known to correlate directly with its cellular functions. However, the molecular mechanism governing this shuttling is not known. In this work, we demonstrate that PIKE is a new member of split pleckstrin homology (PH) domain-containing proteins.
View Article and Find Full Text PDFMultiple PDZ domain scaffold protein Par-3 and phosphoinositides (PIPs) are required for polarity in diverse cell types. We show that the second PDZ domain of Par-3 binds to phosphatidylinositol (PI) lipid membranes with high affinity. We further demonstrate that a large subset of PDZ domains in mammalian genomes are capable of binding to PI lipid membranes, indicating that lipid binding is the second most prevalent interaction mode of PDZ domains known to date.
View Article and Find Full Text PDFThe evolutionarily conserved Par-3/Par-6/aPKC complex is essential for the establishment and maintenance of polarity of a wide range of cells. Both Par-3 and Par-6 are PDZ domain containing scaffold proteins capable of binding to polarity regulatory proteins. In addition to three PDZ domains, Par-3 also contains a conserved N-terminal oligomerization domain (NTD) that is essential for proper subapical membrane localization and consequently the functions of Par-3.
View Article and Find Full Text PDFMembers of the X11/Mint family of multidomain adaptor proteins are composed of a divergent N terminus, a conserved PTB domain and a pair of C-terminal PDZ domains. Many proteins can interact with the PDZ tandem of X11 proteins, although the mechanism of such interactions is unclear. Here we show that the highly conserved C-terminal tail of X11alpha folds back and inserts into the target-binding groove of the first PDZ domain.
View Article and Find Full Text PDFThe tumor suppressor protein p53 is known to undergo cytoplasmic dynein-dependent nuclear translocation in response to DNA damage. However, the molecular link between p53 and the minus end-directed microtubule motor dynein complex has not been described. We report here that the 8-kDa light chain (LC8) of dynein binds to p53-binding protein 1 (53BP1).
View Article and Find Full Text PDFMinocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations.
View Article and Find Full Text PDFEpithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance (CFTR) have been shown to exhibit cyclic expression patterns in the uterus and demonstrated to play important roles in regulating uterine fluid absorption and secretion. The present study investigated the effect of a low Na+ diet on the cyclic expression of uterine ENaC subunits and CFTR in mice. Ten to 12 weeks old ICR mice with synchronized estrus cycle were fed with a low sodium diet for at least 2 weeks and the mRNA level of these ion channels was examined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFCystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells, mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis (CF). Although CFTR has been implicated in bicarbonate secretion, its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown. We demonstrate here that endometrial epithelial cells possess a CFTR-mediated bicarbonate transport mechanism.
View Article and Find Full Text PDFTraditional Chinese medicine (TCM) has a long history in stroke therapy and its therapeutic efficacy has been confirmed by clinical studies. The molecular basis of the neuroprotective effects is unknown. We wondered whether or not the neuroprotective effect of TCMs might be due to their N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist properties.
View Article and Find Full Text PDFBackground: Recent studies have reported the negative impact of hydrosalpinx on IVF outcome. Toxic effects of hydrosalpinx fluid (HF) have been the main reason for the recommendation of functional surgery, salpingectomy, prior to IVF. The present study characterized hydrosalpinx epithelial cell culture and examined the effects of its conditioned medium (CM) on sperm motility, acrosome reaction and embryo development.
View Article and Find Full Text PDF