Fibrosis is an excessive accumulation of the extracellular matrix within solid organs in response to injury and a common pathway that leads functional failure. No clinically approved agent is available to reverse or even prevent this process. Herein, we report a nanotechnology-based approach that utilizes a drug carrier to deliver a therapeutic cargo specifically to fibrotic kidneys, thereby improving the antifibrotic effect of the drug and reducing systemic toxicity.
View Article and Find Full Text PDFLiver damage and fibrosis are precursors of hepatocellular carcinoma (HCC). In HCC patients, sorafenib-a multikinase inhibitor drug-has been reported to exert anti-fibrotic activity. However, incomplete inhibition of RAF activity by sorafenib may also induce paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in malignant cells.
View Article and Find Full Text PDFChronic liver diseases have recently garnered substantial attention as a leading cause of death around the world. During the progression of liver fibrosis/cirrhosis induced by chronic liver injury, hepatic stellate cells (HSCs) play key roles in the regulation of liver fibrogenesis and can even accelerate the progression of hepatocellular carcinoma (HCC). Thus, inhibition of HSC activation or suppression of inflammatory cytokine secretion by HSCs may be an efficient therapeutic strategy to ameliorate liver fibrosis/cirrhosis.
View Article and Find Full Text PDFBreast cancer is the most universal cancer in women, but the medications for breast cancer usually cause serious side effects and offer no effective treatment for triple-negative breast cancer. Here, we investigated the growth inhibitory effects of gallic acid (GA), (-)-epigallocatechin gallate (EGCG), or 1,2,3,4,6-penta-O-galloyl-β-D-glucose (5GG) combined with quercetin (Que) on breast cancer cells. In this study, we tested the combined effects of these compounds on estrogen receptor (ER)/human epidermal growth factor 2 (Her2)-negative (MDA-MB-231), ER-positive/Her2-negative (BT483), and ER-negative/Her2-positive (AU565) breast cancer cells.
View Article and Find Full Text PDF