Publications by authors named "Ling-Fen Kong"

Unlabelled: Understanding the mechanisms, structuring microbial communities in oligotrophic ocean surface waters remains a major ecological endeavor. Functional redundancy and metabolic tuning are two mechanisms that have been proposed to shape microbial response to environmental forcing. However, little is known about their roles in the oligotrophic surface ocean due to less integrative characterization of community taxonomy and function.

View Article and Find Full Text PDF

The twilight zone (from the base of the euphotic zone to the depth of 1,000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POC samples collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach.

View Article and Find Full Text PDF

Solubilized particulate organic matter (POM) rather than dissolved organic matter (DOM) has been speculated to be the major carbon and energy sources for heterotrophic prokaryotes in the ocean. However, the direct evidence is still lack. Here we characterized microbial transport proteins of POM collected from both euphotic (75 m, deep chlorophyll maximum DCM, and 100 m) and upper-twilight (200 m and 500 m) zones in three contrasting environments in the northwest Pacific Ocean using a metaproteomic approach.

View Article and Find Full Text PDF

Microeukaryotes are the key ecosystem drivers mediating marine productivity, the food web and biogeochemical cycles. The northwestern Pacific Ocean (NWPO), as one of the world's largest oligotrophic regions, remains largely unexplored regarding diversity and biogeography of microeukaryotes. Here, we investigated the community composition and geographical distribution of microeukaryotes collected from the euphotic zone of three different regions in the NWPO using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of environmental factors on the distributions of microeukaryotes.

View Article and Find Full Text PDF

Nitrogen (N) is a primary limiting nutrient for bacterial growth and productivity in the ocean. To better understand bacterial community and their N utilization strategy in different N regimes of the ocean, we examined bacterial diversity, diazotrophic diversity, and N utilization gene expressions in the northwestern Pacific Ocean (NWPO) using a combination of high-throughput sequencing and real-time qPCR methods. 521 and 204 different operational taxonomic units (OTUs) were identified in the 16s rRNA and nifH libraries from nine surface samples.

View Article and Find Full Text PDF

Viral concentrates (VCs), containing bioinformative DNA and proteins, have been used to study viral diversity, viral metagenomics and virus-host interactions in natural ecosystems. Besides viruses, VCs also contain many noncellular biological components including diverse functional proteins. Here, we used a shotgun proteomic approach to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum (DCM) of the South China Sea.

View Article and Find Full Text PDF

Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities.

View Article and Find Full Text PDF