Mosunetuzumab, a T-cell engaging bispecific antibody targeting CD20xCD3, is approved for treating relapsed/refractory follicular lymphoma. This research supports the approved intravenous clinical dose regimen, summarizing the exposure-response relationships for clinical safety and efficacy. A population pharmacokinetic model and E logistic regression exposure-response models for safety and efficacy were developed using data from 439 patients with relapsed/refractory non-Hodgkin lymphoma and 159 patients with relapsed/refractory follicular lymphoma, respectively, from a Phase I/II study (NCT02500407).
View Article and Find Full Text PDFCD20 is an established therapeutic target in B-cell malignancies. The CD20 × CD3 bispecific antibody mosunetuzumab has significant efficacy in B-cell non-Hodgkin lymphomas (NHLs). Because target antigen loss is a recognized mechanism of resistance, we evaluated CD20 expression relative to clinical response in patients with relapsed and/or refractory NHL in the phase 1/2 GO29781 trial investigating mosunetuzumab monotherapy.
View Article and Find Full Text PDFPhase I oncology clinical trials often comprise a limited number of patients representing different disease subtypes who are divided into cohorts receiving treatment(s) at different dosing levels and schedules. Here, we leverage a previously developed quantitative systems pharmacology model of the anti-CD20/CD3 T-cell engaging bispecific antibody, mosunetuzumab, to account for different dosing regimens and patient heterogeneity in the phase I study to inform clinical dose/exposure-response relationships and to identify biological determinants of clinical response. We developed a novel workflow to generate digital twins for each patient, which together form a virtual population (VPOP) that represented variability in biological, pharmacological, and tumor-related parameters from the phase I trial.
View Article and Find Full Text PDFMost colorectal (CRC) tumors are dependent on EGFR/KRAS/BRAF/MAPK signaling activation. ARID1A is an epigenetic regulator mutated in approximately 5% of non-hypermutated CRC tumors. Here we show that anti-EGFR but not anti-VEGF treatment enriches for emerging ARID1A mutations in CRC patients.
View Article and Find Full Text PDFBackground: The combination of atezolizumab, a monoclonal antibody that targets programmed death-ligand 1 (PD-L1) and inhibits the interaction between PD-L1 and its receptors, and tazemetostat, an EZH2 inhibitor, may lead to selective epigenetic reprogramming, alter the tumor microenvironment, and provide additive or synergistic response to patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL).
Materials And Methods: This was an open-label, phase Ib study assessing the safety, tolerability, and preliminary efficacy of atezolizumab plustazemetostat in patients with R/R DLBCL. Atezolizumab (1200 mg) was administered via intravenous (IV) infusion on day 1 of each cycle and tazemetostat (800 mg) was given orally twice daily (BID) on days 1 to 21.
Idasanutlin, an MDM2 antagonist, showed clinical activity and a rapid reduction in JAK2 V617F allele burden in patients with polycythemia vera (PV) in a phase 1 study. This open-label phase 2 study evaluated idasanutlin in patients with hydroxyurea (HU)-resistant/-intolerant PV, per the European LeukemiaNet criteria, and phlebotomy dependence; prior ruxolitinib exposure was permitted. Idasanutlin was administered once daily on days 1 through 5 of each 28-day cycle.
View Article and Find Full Text PDFPurpose: We developed a method to monitor copy number variations (CNV) in plasma cell-free DNA (cfDNA) from patients with metastatic squamous non-small cell lung cancer (NSCLC). We aimed to explore the association between tumor-derived cfDNA and clinical outcomes, and sought CNVs that may suggest potential resistance mechanisms.
Experimental Design: Sensitivity and specificity of low-pass whole-genome sequencing (LP-WGS) were first determined using cell line DNA and cfDNA.
Breast cancer is a heterogeneous disease and patients are managed clinically based on ER, PR, HER2 expression, and key risk factors. We sought to characterize the molecular landscape of high-risk breast cancer patients enrolled onto an adjuvant chemotherapy study to understand how disease subsets and tumor immune status impact survival. DNA and RNA were extracted from 861 breast cancer samples from patients enrolled onto the United States Oncology trial 01062.
View Article and Find Full Text PDFBackground: The current single-arm, open-label trial was designed to evaluate the activity of apitolisib (GDC-0980), a dual phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor, in patients with advanced endometrial cancer (EC).
Methods: Patients with recurrent or persistent EC who were treated with 1 to 2 prior lines of chemotherapy but no prior PI3K/mTOR inhibitor received oral apitolisib at a dose of 40 mg daily during 28-day cycles until disease progression or intolerable toxicity occurred. Patients with type I/II diabetes who required insulin were excluded.
Purpose: To the best of our knowledge, this study is the first to compare dual inhibition of PI3K/mammalian target of rapamycin (mTOR) by apitolisib (GDC-0980) against single inhibition of mTORC1 by everolimus in metastatic renal cell carcinoma (mRCC).
Patients And Methods: Patients with clear-cell mRCC who progressed on or after vascular endothelial growth factor-targeted therapy were randomly assigned to apitolisib 40 mg once per day or to everolimus 10 mg once per day. End points included progression-free survival, safety, overall survival, and objective response rate.
Purpose: Up to one third of ovarian cancer patients are intrinsically resistant to platinum-based treatment. However, predictive and therapeutic strategies are lacking due to a poor understanding of the underlying molecular mechanisms. This study aimed to identify key molecular characteristics that are associated with primary chemoresistance in epithelial ovarian cancers.
View Article and Find Full Text PDFThe insulin-like growth factor-I receptor (IGF-IR) pathway is required for the maintenance of the transformed phenotype in neoplastic cells and hence has been the subject of intensive drug discovery efforts. A key aspect of successful clinical development of targeted therapies directed against IGF-IR will be identification of responsive patient populations. Toward that end, we have endeavored to identify predictive biomarkers of response to an anti-IGF-IR-targeting monoclonal antibody in preclinical models of breast and colorectal cancer.
View Article and Find Full Text PDFMorbidity and mortality of peripheral arterial occlusive disease significantly increases with age, often exhibiting more severe disease pathology and decreased treatment effectiveness. Therapeutic angiogenesis with angiogenic growth factors may represent a valuable treatment option for the severely ill, older adult patient population. Aging is considered an independent cardiovascular risk factor, but pathomechanistically it is not well understood.
View Article and Find Full Text PDFLow density lipoprotein receptor deficient (LDLR-KO) and apolipoprotein E deficient (apo E-KO) mice both develop hyperlipidemia and atherosclerosis by different mechanisms. The aim of the present study was to compare the effects of simvastatin on cholesterol levels, endothelial dysfunction, and aortic lesions in these two models of experimental atherosclerosis. Male LDLR-KO mice fed a high cholesterol (HC; 1%) diet developed atherosclerosis at 8 months of age with hypercholesterolemia.
View Article and Find Full Text PDF